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𝑘-Lines problem

• Input: 𝑃 ⊆ 𝑅𝑑

• Query space: 𝑄 = { ℓ1, … , ℓ𝑘 ∣ ℓ𝑖 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒 𝑖𝑛 𝑅
𝑑}}

• Cost function: ∀𝐿 ∈ 𝑄:
𝑑𝑖𝑠𝑡 𝑝, 𝐿 = min

ℓ∈𝐿
𝑑𝑖𝑠𝑡 𝑝, ℓ = min

ℓ∈𝐿
min
𝑥∈ℓ

‖𝑝 − 𝑥 ‖2

• OPT = min
𝐿∈𝑄

𝑑𝑖𝑠𝑡 𝑃, 𝐿



4-approximation for 𝑘-Lines problem

(k=1 , d=2)



4-approximation for 𝑘-Lines problem

(k=1 , d=2)

ℓ∗

ℓ∗ is the line that minimizes 

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ

𝑝∗ = 𝑎𝑟𝑔max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ∗



ℓ∗

ℓ∗ is the line that minimizes 

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ
ℓ′

ℓ′ is the translation of ℓ∗ to

ℓ∗′𝑠 closest point 𝑝′

𝑝∗ = 𝑎𝑟𝑔max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ∗

𝑝′
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ℓ∗

ℓ∗ is the line that minimizes 

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ
ℓ′

ℓ′ is the translation of ℓ∗ to

ℓ∗′𝑠 closest point 𝑝′

𝑝∗ = 𝑎𝑟𝑔max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ∗

𝑑𝑖𝑠𝑡 𝑝, ℓ′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, ℓ∗
𝑝′
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ℓ∗

ℓ∗ is the line that minimizes 

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ
ℓ′

ℓ′ is the translation of ℓ∗ to

ℓ∗′𝑠 closest point 𝑝′

𝑝∗ = 𝑎𝑟𝑔max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ∗

𝑑𝑖𝑠𝑡 𝑝, ℓ′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, ℓ∗

ℓ′′

𝑝′

ℓ′′ is the rotation of ℓ′

around 𝑝′ to ℓ′
′
𝑠 closest 

point
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ℓ∗

ℓ∗ is the line that minimizes 

max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ
ℓ′

ℓ′ is the translation of ℓ∗ to

ℓ∗′𝑠 closest point 𝑝′

𝑝∗ = 𝑎𝑟𝑔max
𝑝∈𝑃

𝑑𝑖𝑠𝑡 𝑝, ℓ∗

𝑑𝑖𝑠𝑡 𝑝, ℓ′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, ℓ∗

ℓ′′

ℓ′′ is the rotation of ℓ′

around 𝑝′ to ℓ′
′
𝑠 closest 

point

𝑑𝑖𝑠𝑡 𝑝, ℓ′′ ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑝, ℓ′

𝑝′

𝒅𝒊𝒔𝒕 𝒑, ℓ′′ ≤ 𝟒 ⋅ 𝒅𝒊𝒔𝒕 𝒑, ℓ∗

4-approximation for 𝑘-Lines problem

(k=1 , d=2)



ℓ′′ Find ℓ′′ by exhaustive search 

over every pair of points.

𝑶 𝒏𝟐

෫𝑂𝑃𝑇

4-approximation for 𝑘-Lines problem

(k=1 , d=2)



𝜖-sample 

algorithm𝑛 𝑝𝑜𝑖𝑛𝑡𝑠

𝑀 𝑝𝑜𝑖𝑛𝑡𝑠
𝜖

(𝛼, 𝛽)-Approximation for 𝑘-Lines

𝑃



Return all lines 

constructed from 

𝜖-sample points
𝑂 𝑀2 𝑙𝑖𝑛𝑒𝑠

𝑘

𝑂(1) time

(𝛼, 𝛽)-Approximation for 𝑘-Lines

𝜖-sample 

algorithm𝑛 𝑝𝑜𝑖𝑛𝑡𝑠

𝑀 𝑝𝑜𝑖𝑛𝑡𝑠
𝜖

𝑃



(𝛼, 𝛽)-
approximation

Add to 

output

(𝛼, 𝛽)-Approximation for 𝑘-Lines

Return all lines 

constructed from 

𝜖-sample points
𝑂 𝑀2 𝑙𝑖𝑛𝑒𝑠

𝑘

𝑂(1) time

𝜖-sample 

algorithm𝑛 𝑝𝑜𝑖𝑛𝑡𝑠

𝑀 𝑝𝑜𝑖𝑛𝑡𝑠
𝜖

𝑃



Remove 
𝒏

𝟐

points closest to 

lines

(𝛼, 𝛽)-
approximation

Add to 

output

(𝛼, 𝛽)-Approximation for 𝑘-Lines

Return all lines 

constructed from 

𝜖-sample points
𝑂 𝑀2 𝑙𝑖𝑛𝑒𝑠

𝑘

𝑂(1) time

𝜖-sample 

algorithm

𝑀 𝑝𝑜𝑖𝑛𝑡𝑠
𝜖

𝑃



Remove 
𝒏

𝟐

points closest to 

lines

(𝛼, 𝛽)-
approximation

Add to 

output

(𝛼, 𝛽)-Approximation for 𝑘-Lines

Return all lines 

constructed from 

𝜖-sample points
𝑂 𝑀2 𝑙𝑖𝑛𝑒𝑠

𝑘

𝑂(1) time

𝜖-sample 

algorithm

𝑀 𝑝𝑜𝑖𝑛𝑡𝑠
𝜖

𝑃

Repeat

𝐥𝐨𝐠𝒏
times.



Analysis:

- 𝑀 = number of points returned by the 𝜖-sample algorithm

- 𝛽 = 𝑂 𝑀2 log 𝑛 .

- 𝛼 = 4 since the 𝜖-sample points is an 4-approximation.

(𝛼, 𝛽)-Approximation for 𝑘-Lines



Coreset for 𝑘-lines mean

• Input: 𝑃 ⊆ 𝑅𝑑

• Query space: 𝑄 = ℓ1, … , ℓ𝑘 ℓ𝑖 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒 𝑖𝑛 𝑅
𝑑

• Cost function: ∀𝐿 ∈ 𝑄: 𝑑𝑖𝑠𝑡 𝑝, 𝐿 = min
ℓ∈𝐿

min
𝑥∈ℓ

‖𝑝 − 𝑥 ‖2 , 𝑓 𝑝, 𝐿 = 𝑑𝑖𝑠𝑡 𝑝, 𝐿 2

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. ∀𝐿 ∈ 𝑄:

෍

𝑝∈𝑃

𝑓 𝑝, 𝐿 −෍

𝑐∈𝐶

𝑓 𝑐, 𝐿 ≤ 𝜖 ⋅෍

𝑝∈𝑃

𝑓 𝑝, 𝐿



Coreset for 𝑘-lines mean

• Input: 𝑃 ⊆ 𝑅𝑑

• Query space: 𝑄 = ℓ1, … , ℓ𝑘 ℓ𝑖 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒 𝑖𝑛 𝑅
𝑑

• Cost function: ∀𝐿 ∈ 𝑄: 𝑑𝑖𝑠𝑡 𝑝, 𝐿 = min
ℓ∈𝐿

min
𝑥∈ℓ

‖𝑝 − 𝑥 ‖2 , 𝑓 𝑝, 𝐿 = 𝑑𝑖𝑠𝑡 𝑝, 𝐿 2

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. ∀𝐿 ∈ 𝑄:

෍

𝑝∈𝑃

𝑓 𝑝, 𝐿 −෍

𝑐∈𝐶

𝑓 𝑐, 𝐿 ≤ 𝜖 ⋅ ෍

𝑝∈𝑃

𝑓 𝑝, 𝐿

→ Need to compute sensitivity 𝑠 𝑝 for the problem above.



Coreset for 𝑘-lines mean

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. ∀𝐿 ∈ 𝑄:

෍

𝑝∈𝑃

𝑓 𝑝, 𝐿 −෍

𝑐∈𝐶

𝑓 𝑐, 𝐿 ≤ 𝜖 ⋅෍

𝑝∈𝑃

𝑓 𝑝, 𝐿

→ Need to compute sensitivity 𝑠 𝑝 for the problem above.

By the sensitivity Lemma:

෍

𝑝∈𝑃

𝑠 𝑝 ≤ 𝜌𝛼 + 𝜌2 1 + 𝛼 ෍

𝑝′∈𝑃′

max
𝐿∈𝑄

𝑓 𝑝′, 𝐿

𝑓 𝑃′, 𝐿



Coreset for 𝑘-lines mean

• Output: 𝑪 ⊆ 𝑃 𝑠. 𝑡. ∀𝐿 ∈ 𝑄:

෍

𝑝∈𝑃

𝑑𝑖𝑠𝑡2 𝑝, 𝐿 −෍

𝑐∈𝐶

𝑑𝑖𝑠𝑡2 𝑐, 𝐿 ≤ 𝜖 ⋅ ෍

𝑝∈𝑃

𝑑𝑖𝑠𝑡2 𝑝, 𝐿

→ Need to compute sensitivity 𝑠 𝑝 for the problem above.

By the sensitivity Lemma:

෍

𝑝∈𝑃

𝑠 𝑝 ≤ 𝜌𝛼 + 𝜌2 1 + 𝛼 ෍

𝑝′∈𝑃′

max
𝐿∈𝑄

𝑓 𝑝′, 𝐿

𝑓 𝑃′, 𝐿

The sensitivity 

of the desired

problem

Projection of 

𝑃 onto the

Bicreteria

Sensitivity of

the projected

points



Coreset for 𝑘-lines mean

By the sensitivity Lemma:

෍

𝑝∈𝑃

𝑠 𝑝 ≤ 𝜌𝛼 + 𝜌2 1 + 𝛼 ෍

𝑝′∈𝑃′

max
𝐿∈𝑄

𝑓 𝑝′, 𝐿

𝑓 𝑃′, 𝐿

→ Compute an 𝛼, 𝛽 -approximation 𝐵 for the 𝑘-lines mean problem 

as previously described. 
✓



Coreset for 𝑘-lines mean

By the sensitivity Lemma:

෍

𝑝∈𝑃

𝑠 𝑝 ≤ 𝜌𝛼 + 𝜌2 1 + 𝛼 ෍

𝑝′∈𝑃′

max
𝐿∈𝑄

𝑓 𝑝′, 𝐿

𝑓 𝑃′, 𝐿

→ Compute an 𝛼, 𝛽 -approximation 𝐵 for the 𝑘-lines mean problem 

as previously described. 

→ Compute 𝑃′ = projection of 𝑃 onto 𝐵.

✓

✓



Coreset for 𝑘-lines mean

By the sensitivity Lemma:

෍

𝑝∈𝑃

𝑠 𝑝 ≤ 𝜌𝛼 + 𝜌2 1 + 𝛼 ෍

𝑝′∈𝑃′

max
𝐿∈𝑄

𝑓 𝑝′, 𝐿

𝑓 𝑃′, 𝐿

→ Compute an 𝛼, 𝛽 -approximation 𝐵 for the 𝑘-lines mean problem 

as previously described. 

→ Compute 𝑃′ = projection of 𝑃 onto 𝐵.

→ Need to compute sensitivity 𝑠 𝑝′ for the projected points.

✓

✓



Coreset for 𝑘-lines mean

→ Need to compute sensitivity 𝑠 𝑝′ for the projected points.

𝑃



Coreset for 𝑘-lines mean

→ Need to compute sensitivity 𝑠 𝑝′ for the projected points.

𝑃 Bicreteria 𝐵



Coreset for 𝑘-lines mean

→ Need to compute sensitivity 𝑠 𝑝′ for the projected points.

𝑃′ = projection of 𝑃 onto B
Bicreteria 𝐵



Coreset for 𝑘-lines mean

→ Need to compute sensitivity 𝑠 𝑝′ for the projected points.

𝑃′ = projection of 𝑃 onto B
Bicreteria 𝐵

→ Now the points are on a set of lines



Coreset for 𝑘-lines mean

→ Need to compute sensitivity 𝑠 𝑝′ for the projected points.

𝑃′ = projection of 𝑃 onto B
Bicreteria 𝐵

→ Now the points are on a set of lines

→ The query 𝐿 ∈ 𝑄 is a set of 𝑘 lines

𝐿 ∈ 𝑄



Coreset for 𝑘-lines mean

→ Need to compute sensitivity 𝑠 𝑝′ for the projected points.

𝑃′ = projection of 𝑃 onto B
Bicreteria 𝐵

→ Now the points are on a set of lines

→ The query 𝐿 ∈ 𝑄 is a set of 𝑘 lines

→ Distance to the set of lines 𝐿 equals a 
distance to a weighted set of points 𝑄𝐿

𝑓 𝑝′, 𝐿 = 𝑓𝜔 𝑝′, 𝑄𝐿

𝐿 ∈ 𝑄



Coreset for 𝑘-lines mean

→ 𝑓 𝑝′, 𝐿 = 𝑓𝜔 𝑝′, 𝑄𝐿 = min
(𝑞,𝜔)∈𝑄𝐿

𝜔 ⋅ 𝑝 − 𝑞 2
2

→ Need to compute sensitivity for the

weighted 𝒌-means problem

→ 𝑠 𝑝′ = max
𝐿∈𝑄

𝑓 𝑝′, 𝐿

𝑓 𝑃′, 𝐿
= max

𝑄𝐿∈𝑅
𝑑

𝑓𝜔 𝑝′, 𝑄𝐿
𝑓𝜔 𝑃′, 𝑄𝐿

Weights are 

unknown beforehand

(part of the query)



Sensitivity for Weighted 𝑘-means 

• Input: 𝑃 ⊆ 𝑅𝑑

• Query space: 𝑄 = 𝑞1, 𝜔1 , … , 𝑞𝑘, 𝜔𝑘 𝑞𝑖 ∈ 𝑅𝑑 , 𝜔𝑖 ∈ 0,∞

• Cost function: ∀𝐶 ∈ 𝑄:
𝑓𝜔 𝑝, 𝐶 = min

𝑐,𝜔 ∈𝐶
𝜔 ⋅ 𝑓 𝑝, 𝑐 = min

𝑐,𝜔 ∈𝐶
𝜔 ⋅ 𝑑𝑖𝑠𝑡2 𝑝, 𝑐



Sensitivity for Weighted 𝑘-means 

• Input: 𝑃 ⊆ 𝑅𝑑

• Query space: 𝑄 = 𝑞1, 𝜔1 , … , 𝑞𝑘, 𝜔𝑘 𝑞𝑖 ∈ 𝑅𝑑 , 𝜔𝑖 ∈ 0,∞

• Cost function: ∀𝐶 ∈ 𝑄:
𝑓𝜔 𝑝, 𝐶 = min

𝑐,𝜔 ∈𝐶
𝜔 ⋅ 𝑓 𝑝, 𝑐 = min

𝑐,𝜔 ∈𝐶
𝜔 ⋅ 𝑑𝑖𝑠𝑡2 𝑝, 𝑐

• The function 𝑓 satisfies the following two conditions for every 𝑝, 𝑞, 𝑐 ∈ 𝑅𝑑 :

1) For 𝜙 = 4𝑟 𝑟:  𝑓 𝑝, 𝑞 − 𝑓 𝑞, 𝑐 ≤ 𝜙𝑓 𝑝, 𝑞 +
𝑓 𝑝,𝑐

4
.

2) For 𝜌 = max 2𝑟−1, 1 : 𝑓 𝑝, 𝑞 ≤ 𝜌 𝑓 𝑝, 𝑐 + 𝑓 𝑐, 𝑞 .

𝑟 (Lipschitz)



Sensitivity for Weighted 𝑘-means 

• Consider the following algorithm:

Robust-Median 𝑷, 𝒌 :

- 𝑄0 = 𝑃
- For 𝑖 = 1 → 𝑘

Compute a 
1

𝑘
, 𝜖, 𝛼 -approx 𝑞𝑖 of 𝑄𝑖−1

𝑄𝑖 = 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑄𝑖−1, 𝑞𝑖 ,
1−𝜖

2𝑘

- Return 𝑞𝑘 , 𝑄𝑘



Sensitivity for Weighted 𝑘-means 

• Consider the following algorithm:

Robust-Median 𝑷, 𝒌 :

- 𝑄0 = 𝑃
- For 𝑖 = 1 → 𝑘

Compute a 
1

𝑘
, 𝜖, 𝛼 -approx 𝑞𝑖 of 𝑄𝑖−1

𝑄𝑖 = 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑄𝑖−1, 𝑞𝑖 ,
1−𝜖

2𝑘

- Return 𝑞𝑘 , 𝑄𝑘

Lemma:

Let 𝑞𝑘, 𝑄𝑘 be the output of Robust-Median 𝑷, 𝒌 .

Then for every 𝑝 ∈ 𝑄𝑘:

𝑠 𝑝 = max
𝐶∈𝑄

𝑓𝜔 𝑝, 𝐶

σ𝑞∈𝑃 𝑓𝜔 𝑞, 𝐶
≤
𝑂 𝑘

𝑄𝑘



Sensitivity for Weighted 𝑘-means 

Example:

𝑘 = 2

𝜖 =
1

2
Iteration #1

𝑄0



Sensitivity for Weighted 𝑘-means 

Example:

𝑘 = 2

𝜖 =
1

2
Iteration #1

𝑞1

𝑄0



Sensitivity for Weighted 𝑘-means 

Example:

𝑘 = 2

𝜖 =
1

2
Iteration #1

𝑞1

𝑄1

𝑄0



Sensitivity for Weighted 𝑘-means 

Example:

𝑘 = 2

𝜖 =
1

2
Iteration #1

𝑄1



Sensitivity for Weighted 𝑘-means 

Example:

𝑘 = 2

𝜖 =
1

2
Iteration #1

𝑄1

𝑞2



Sensitivity for Weighted 𝑘-means 

Example:

𝑘 = 2

𝜖 =
1

2
Iteration #1

𝑄1

𝑞2

𝑄2



Sensitivity for Weighted 𝑘-means 

Example:

𝑘 = 2

𝜖 =
1

2
Iteration #1

𝑄2



Sensitivity for Weighted 𝑘-means 

Example:

𝑘 = 2

𝜖 =
1

2
Iteration #1

𝑄2

∀𝑝 ∈ 𝑄2: 𝑠 𝑝 ≤
𝑂 1

𝑄2



Sensitivity for Weighted 𝑘-means 

Proof:

Consider the variables 𝑄0, … , 𝑄𝑘 and 𝑞1, … , 𝑞𝑘 that are computed in the algorithm.

- 𝑝 ∈ 𝑃 is served by a weighted center 𝑐, 𝜔 ∈ 𝐶 if 𝑓𝜔 𝑝, 𝐶 = 𝜔 ⋅ 𝑓 𝑝, 𝑐 .

- Let 𝑐𝑖 , 𝜔𝑖 denote a center that serves at least 
𝑄𝑖−1

𝑘
points from 𝑄𝑖−1for every 𝑖 ∈ 𝑘 + 1 .

- Let 𝑃𝑖 denote the points of 𝑃 that are served by 𝑐𝑖 , 𝜔𝑖 .

- Let 𝑄𝑖
′ ≔ 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑄𝑖−1, 𝑞𝑖 ,

1−𝜖

𝑘
, 𝑓𝑖

∗ = σ
𝑞∈𝑄𝑖

′ 𝑓 𝑞, 𝑞𝑖 for every 𝑖 ∈ 𝑘 .



Sensitivity for Weighted 𝑘-means 

Proof:

Consider the variables 𝑄0, … , 𝑄𝑘 and 𝑞1, … , 𝑞𝑘 that are computed in the algorithm.

- 𝑝 ∈ 𝑃 is served by a weighted center 𝑐, 𝜔 ∈ 𝐶 if 𝑓𝜔 𝑝, 𝐶 = 𝜔 ⋅ 𝑓 𝑝, 𝑐 .

- Let 𝑐𝑖 , 𝜔𝑖 denote a center that serves at least 
𝑄𝑖−1

𝑘
points from 𝑄𝑖−1for every 𝑖 ∈ 𝑘 + 1 .

- Let 𝑃𝑖 denote the points of 𝑃 that are served by 𝑐𝑖 , 𝜔𝑖 .

- Let 𝑄𝑖
′ ≔ 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑄𝑖−1, 𝑞𝑖 ,

1−𝜖

𝑘
, 𝑓𝑖

∗ = σ
𝑞∈𝑄𝑖

′ 𝑓 𝑞, 𝑞𝑖 for every 𝑖 ∈ 𝑘 .
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𝑄𝑖−1
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- Let 𝑐𝑖 , 𝜔𝑖 denote a center that serves at least 
𝑄𝑖−1
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- Let 𝑃𝑖 denote the points of 𝑃 that are served by 𝑐𝑖 , 𝜔𝑖 .

- Let 𝑄𝑖
′ ≔ 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑄𝑖−1, 𝑞𝑖 ,

1−𝜖

𝑘
, 𝑓𝑖

∗ = σ
𝑞∈𝑄𝑖

′ 𝑓 𝑞, 𝑞𝑖 for every 𝑖 ∈ 𝑘 .

It follows that 𝑃𝑖 ∩ 𝑄𝑖−1 ≥
𝑄𝑖−1

𝑘
≥ 𝑄𝑖

′ .

→ ෍

𝑞∈𝑃𝑖∩𝑄𝑖−1

𝑓 𝑞, 𝑐𝑖 ≥ 𝑓∗ 𝑄𝑖−1,
1

𝑘

𝑓∗ 𝑄𝑖 , 𝛾 = min
𝐶∈𝑄

෍

𝑝∈𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑄𝑖,𝐶,𝛾

𝑓 𝑝, 𝐶



Sensitivity for Weighted 𝑘-means 

Proof:

Case (i):

There is 𝑖 ∈ 𝑘 such that: 𝑓 𝑝, 𝑐𝑖 ≤ 16𝜙𝜌𝛼 ⋅
𝑓𝑖
∗

𝑄𝑘
′ .

Case (ii):

Otherwise.
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Proof:

Case (i):

There is 𝑖 ∈ 𝑘 such that: 𝑓 𝑝, 𝑐𝑖 ≤ 16𝜙𝜌𝛼 ⋅
𝑓𝑖
∗

𝑄𝑘
′ .

Case (ii):

Otherwise.

Proof of Case (ii):

By the pigeonhole principle, 𝑐𝑖 = 𝑐𝑗 for some 𝑖, 𝑗 ∈ 𝑘 + 1 , i < j.

Put 𝑞 ∈ 𝑃𝑗 ∩ 𝑄𝑗−1. Note that 𝑝 ∈ 𝑄𝑘 ⊆ 𝑄𝑗−1. 

Using the Markov inequality,

𝑓 𝑞, 𝑞𝑗−1 , 𝑓 𝑝, 𝑞𝑗−1 ≤
2𝑓𝑗−1

∗

𝑄𝑗−1
′
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Proof of Case (ii):

By the pigeonhole principle, 𝑐𝑖 = 𝑐𝑗 for some 𝑖, 𝑗 ∈ 𝑘 + 1 , i < j.

Put 𝑞 ∈ 𝑃𝑗 ∩ 𝑄𝑗−1. Note that 𝑝 ∈ 𝑄𝑘 ⊆ 𝑄𝑗−1. 

Using the Markov inequality,

𝑓 𝑞, 𝑞𝑗−1 , 𝑓 𝑝, 𝑞𝑗−1 ≤
2𝑓𝑗−1

∗

𝑄𝑗−1
′

Notice that

𝑓 𝑝, 𝑞 ≤ 𝜌 𝑓 𝑝, 𝑞𝑗−1 + 𝑓 𝑞𝑗−1, 𝑞 ≤ 𝜌
2𝑓𝑗−1

∗

𝑄𝑗−1
′

+
2𝑓𝑗−1

∗

𝑄𝑗−1
′

≤
4𝜌 ⋅ 𝑓𝑗−1

∗

𝑄𝑗−1
′

→ 𝑓 𝑝, 𝑞 ≤
4𝜌 ⋅ 𝑓𝑗−1

∗

𝑄𝑗−1
′

Weak triangle 

inequality
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Proof of Case (ii):

→ 𝑓 𝑝, 𝑐𝑗 − 𝑓 𝑞, 𝑐𝑗 ≤ 𝜙𝑓 𝑝, 𝑞 +
𝑓 𝑝, 𝑐𝑗

4

𝑓 𝑝, 𝑞 − 𝑓 𝑞, 𝑐 ≤ 𝜙𝑓 𝑝, 𝑞 +
𝑓 𝑝, 𝑐

4



Sensitivity for Weighted 𝑘-means 

Proof of Case (ii):

→ 𝑓 𝑝, 𝑐𝑗 − 𝑓 𝑞, 𝑐𝑗 ≤ 𝜙𝑓 𝑝, 𝑞 +
𝑓 𝑝, 𝑐𝑗

4

≤
4𝜙𝜌 ⋅ 𝑓𝑗−1

∗

𝑄𝑗−1
′

+
𝑓 𝑝, 𝑐𝑗

4Proved in last slide
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Proof of Case (ii):
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≤
4𝜙𝜌𝛼 ⋅ 𝑓𝑖

∗

𝑄𝑘
′

+
𝑓 𝑝, 𝑐𝑗

4

𝑄𝑘 ⊆ 𝑄𝑗−1 → 𝑄𝑘 ≤ 𝑄𝑗−1 → 𝑄𝑘
′ ≤ 𝑄𝑗−1

′

and 𝑓𝑗−1
∗ ≤ 𝛼𝑓𝑖

∗.
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Proof of Case (ii):
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∗

𝑄𝑘
′

+
𝑓 𝑝, 𝑐𝑗

4

<
𝑓 𝑝, 𝑐𝑖

4
+
𝑓 𝑝, 𝑐𝑗

4Since Case (i) doesn’t hold:

16𝜙𝜌𝛼 ⋅
𝑓𝑖
∗

𝑄𝑘
′
< 𝑓 𝑝, 𝑐𝑖 → 4𝜙𝜌𝛼 ⋅

𝑓𝑖
∗

𝑄𝑘
′
<
𝑓 𝑝, 𝑐𝑖

4



Sensitivity for Weighted 𝑘-means 

Proof of Case (ii):
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+
𝑓 𝑝, 𝑐𝑗

4

<
𝑓 𝑝, 𝑐𝑖

4
+
𝑓 𝑝, 𝑐𝑗

4

=
𝑓 𝑝, 𝑐𝑗

4
+
𝑓 𝑝, 𝑐𝑗

4𝑐𝑖 = 𝑐𝑗
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Proof of Case (ii):
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2
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→ 𝑓 𝑞, 𝑐𝑗 >
𝑓 𝑝, 𝑐𝑗

2



Sensitivity for Weighted 𝑘-means 

Proof:

→
𝑓𝜔 𝑝, 𝐶

σ𝑞∈𝑃 𝑓𝜔 𝑞, 𝐶
<

𝑓 𝑝, 𝑐𝑗

σ𝑞∈𝑃𝑗∩𝑄𝑗−1
𝑓 𝑞, 𝑐𝑗

<
2 ⋅ 𝑓 𝑝, 𝑐𝑗

σ𝑞∈𝑃𝑗∩𝑄𝑗−1
𝑓 𝑝, 𝑐𝑗

=
2 ⋅ 𝑓 𝑝, 𝑐𝑗

𝑓 𝑝, 𝑐𝑗 ⋅ 𝑃𝑗 ∩ 𝑄𝑗−1

≤
2𝑘

𝑄𝑗−1

≤
2𝑘

𝑄𝑗



𝑘-means With Outliers

Definition:

Find 𝑘 centers that minimize sum of squared distances to the closest 𝑛 −𝑚 points

i.e., ignore the farthest 𝑚 points (outliers).



𝑘-means With Outliers

Definition:

Find 𝑘 centers that minimize sum of squared distances to the closest 𝑛 −𝑚 points

i.e., ignore the farthest 𝑚 points (outliers).

Example:

𝑘 = 3,𝑚 = 3



𝑘-means With Outliers

Solution:

Solve the weighted 𝑘-means with 𝑘′ = 𝑘 +𝑚 and 

weights: 𝜔1, … , 𝜔𝑘 = 1, 𝜔𝑘+1, … , 𝜔𝑘+𝑚 = ∞

Example:

𝑘 = 3,𝑚 = 3



𝑘-means With Outliers

Solution:

Solve the weighted 𝑘-means with 𝑘′ = 𝑘 +𝑚 and 

weights: 𝜔1, … , 𝜔𝑘 = 1, 𝜔𝑘+1, … , 𝜔𝑘+𝑚 = ∞

Example:

𝑘 = 3,𝑚 = 3
𝜔1 = 1

𝜔2 = 1

𝜔3 = 1

𝜔5 = ∞

𝜔4 = ∞

𝜔6 = ∞

Will automatically 

be assigned to

the outliers


