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Traditional Measurements

Input size: n
Running time: t(n)
Memory (space): s(n)

In CS and in this class we use the "O“ notation:
- We do not try to optimize constants.

n — oo (justifies not handling constants).

“Memory”’: usually refers to RAM. Might also be HDD.
- Memory for running an algorithm might be much larger than n (the input size).



Big data Input

Data dimensionality (# of features): d

Data sparsity: s

n = # of points seen so far (=2 Infinity)

M = # of machines
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Streaming and distributed algorithms:

/Can be: h Processing unit 1
= One-pass (important: const. update time).
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Processing units

= Threads
= Shard memory (centralized)
= Machines (network, cloud)
= Distributed Data
= Possible Graph of Communication
= GPU (limited parallel local computations)
" |oT — low energy and weak computations: Arduino, Rpie
= Sensors that collect a lot of data, usually to the web

\-Real—Time: Face recognition (sec), Quadcopters (msec), Video Stre

/




Computation models [+ ofine h

= Streaming (insertions only)
= Dynamic Data (+ deletions)
= Sliding window
= Turn-style model (coordinates updates)

Dvynamic-Model: K- Kinematic data (moving points) j
Instant
update Memory Computer / Cloud Web / HDD

Updated Insert

Model

logn -

Delete

e

Old model

Computation unit



Motivation

New computation models
- Big Data

- Streaming real-time data
- Distributed data

Limited hardware
- Computation: loT, GPU
- Energy: smartphones, drones

Common solution:
- New optimization algorithms



How to handle
all these new computation models?

 Possible approach:
— design new learning/optimization algorithms under the new constraints

* |In this class:
— Use data summarization/reduction (called core-set)
— Solve problem on coreset using existing algorithms




Less:
Time
Memory,

Energy
Cost, ...




Query Space

Definition: Let
» P be a set of n elements.

» () be a set of possibly infinite elements / queries.
»w: P — |0,00).

»>f:P X (Q — R be a cost function.

The tuple (P, w, Q, f) is called a query space.

» The cost of a query g € Q is defined by

fPw.g) =) @ fb,q

peEP



Query Space

Problem: One mean P

w(p17) . ‘ w(py)

»P = {p11'°'Jpn} - ]Rd-

»Q = R (every possible point in R%). O ‘sz I w(p2)
»w: P — [0, ). ®

»f(0,q) = llp —qll* foreveryp e Pandq € Q. @ ®

The tuple (P, w, Q, f) is our guery space.



Query Space

Problem: Points to Hyperplanes
—a —
»A=| i | €R™? (npointsin R%)

»S = R% (The normals of hyperplanes in R%)
»w(a) = 1 forevery a € A.
> f(a,x) = |ax]|? for every a € A and x € S.

N Z w(a;) - f(a;,x) = ||Ax]||?

The tuple (A, w, S, f) is our query space.



Exact coresets
= |[nput: Query space (P,w, 0, [)

Exact coreset: (C, i) is an exact coreset (usually C € P, u: C — |0, «)),
If for every g In Q we have that the sum of the cost function on P with
query g Is the same as the sum of the cost function on C with query q.

Vq € Q:
D W) f@.@) =) r© - fe

peEP ceC



Exact Coreset - Example:
Points to Hyperplanes

Reminder: OR Decomposition

Decomposition of A € R™*? into A = QR where:

Q € R™*? is an orthogonal matrix and R € R%*¢ is an upper triangular matrix.

1u
r I , , I o ) , flay |
I ! | | | I . Ug
_al - _el - (el,al) (61,a2> (61,83) Ny = &aa — ]_'JI'E[]UI A, By = l
. _ : 0 (e2,22) (e2,a3) ... d |E§ |
' o ' 0 0 (es,az) ... ug = a — proj,, a; — proj,, ag, ey = m
_an _ _en - : : : ., 3
k-1
. g
u. = ag — Y proj, a, e

=1 |l



Exact Coreset via QR-Decomposition

Input: Points—Hyperplane Query Space: (4,w, S, f).
Goal: Compute R € R%*% such that (4, x) = f(R,x) forevery x € S.
Let Q, R be the QR-decomposition of A. For every x € S it holds that:

f(A, x) = ||Ax||* 4f |@QRx||* 41= IRx||* = f(R,x)
A= QR Q'Q =

Hence, the rows of R are an exact coreset (yet not a subset of the data) for the
Points-Hyperplane Query Space problem since:

Vx € S:
f(z?,x) = ||Ax||* = [|Rx||* = f(f; X)

A € R™4 R € R4



Exact Coreset - Example

Problem: 1-mean

Input: The query space (P,w, Q, f) of 1-mean. We currently assume that
w(p) = 1 forevery p € P.

Goal: Compute a pair (C, u) such that
Vx € Q

D 1-lp ==l = ) p(e)-llc P

peP ceC




Exact Coreset - Example

Problem: 1-mean

Exact 1-mean using 3 first moments:

D ==l = > pll? + x> = 2™ = ) IIpli2 + ) llxll? =2 ) p"x

peEP PEP

=pep||z( ¥ < ) }z (pZ

The statistics that define the set P

w)

peEP peP peEP

X

/Solution #1:
Store the three statistics in memory.

However, they do not satisfy our definition of

\Exact Coreset!

/




Exact Coreset - Example

Problems with solution #1:
- If the input data is sparse, the vector Zpe p pT might not be sparse!
- The vector 2, ,cp p’ is not part of the input data. We prefer our representatives to be a

subset of the input data!

Solution #2:
Try to find a an exact coreset (subset) C of the data and a weights w: C — R such that:

DEP cecC
IP| = n= Z w(C)
ceC



1-mean queries

Solution #2:

1) Build new vectors in R4*2:

, [ Di
Pi = | |p;112
1

2) Find a Linear Combination of the mean of P. This combination is a subset C € P
of the vectors of size |C| = d + 2 and a set u of d + 2 weights.
The set C satisfies the three properties needed.

Problem with solution #2:

The weights are not bounded (might be negative and huge — numerical problems).



Preliminaries - Convex combination

A convex combination Is a linear combination of
points where all coefficients are non-negative and sum
to 1.

A convex region Is a region where, for every pair of
points within the region, every point on the straight line
segment that joins the pair of points is also within the
region.

A convex hull of a set P i1s IS the smallest convex set
that contains P.

Every point x in a convex hull of a set of points P can
be written as a convex combination of a finite number
of points in P.




1-mean queries

Solution #3:

1) Build new vectors in R4*2:

, [ Di
Pi = | |p;112
1

2) Find a Convex Combination of the mean of P using Caratheodory's theorem.
This combination is a subset C € P of the vectors of size |C| = d + 3 and a set
u of d + 3 positive weights that sum to one.
The set C satisfies the three properties needed.



Caratheodory’s theorem

“If a point x € R? lies in the convex hull of a set P, there is a
subset P'of P consisting of d + 1 or fewer points such that x lies in the convex

hull of P".”

3
X = Zﬂipi»

~>"

\Y

A
M w

o

|

—_




Caratheodory’s theorem - intuition

Convex combination: A;. All are positive.

Linear combination: y;. One of them is negative..”

Assume that x
is the origin.

Z/li = 1;2111' = O;ZMiPi = 0.
*Z“Mipi = QZHiPi =0
- Z/li, = Z(/li — ap;)
=Zli—a2ui =1




1-mean queries

Solution #3:
Using Caratheodory’'s Theorem we can represent the vector

N ( pi i=1Pi

: 2 2
nof =1\ [l > v
i—1Pi 1/ “1,|,| l

n n n

by a set of (d + 3) input points and (d + 3) weights.

Ay lololol1|ofloflofloflofo|o]o 0|1|p1

Saved in memory | Ay Jololofl1|olololofjolofloflo|.[.|.lof1]|P>
[
o

o !/

Agez* 0] 0|o]1]|oflo]o|ofo]ofo]o 0|1]|Pa+3




1-center / minimum enclosing ball

= Given a set of n points P in R%, find the point ¢ € R? that minimizes:
far(P,q) = rggPXIlp — 4

Motivation:
Where should we place an antenna if the price paid is the
antenna’s distance to the farthest customer?

o‘ o’ ; i i o




Minimum enclosing ball

Optimal solution in R<:
Claim: A sphere in R? is determined by d + 1.

Algorithm: Exhaustive search over all (") tuples of ¢

+ 1 points.

Running time: n%(®,




Minimum enclosing ball - heuristic

Hough transform:

-A heuristic for finding a circle that best fits the data.

-Divides the circle parametric space into small fixed-size cells (grid) with no optimality
guarantee. (Assumes circle radius Is in range [r, 13 ]).

. _ . b The global maxima are
Let circ(x,y,r) = {(a,b) | lla—x,b — y|| = 7}. j |W the “best fitting” circles
N _ (the circles with maximal
for g number of votes)
each di el ] a ~ |
n points point forfeoi"e:ieic; }%i;t (arli’)rze circ(x,y,r) F— ] — | Findglobal
x’ ) ) ) L
(x,¥) Ala,b.r] + +: s maxima of A
Assume every data point is a circle center, ' _/;

and “vote” for each point on that circle.



> 2

Hough transform - example

> 2

> X

'.'l-q.-'}

aOWON R




Query Space

Problem: One center

»P = {py,~+,pn} € R

»>Q = R4 (every possible point in R%).
»w(P) = 1foreveryp € P.

»far(P,q) = rgeapxllp — q|| for every g € Q.

The tuple (P, w, Q, far) is our query space.



1-center

Input: The query space (P, w, O, far) of one center.

Special case:
Exact coreset for 1-center queries when P ¢ R and g € R%:

e @

o—@ @ o—@ @ @ @

N d

The farthest point from every query q € R% is one of the edge points!




e-Coresets

Let A be a set of elements. Let (P, w, Q, f) be a query space where P
C A.

An g-coreset is a set (C, u), where C € A, u: C - |0, ), such that
for every g € Q we have that:

(1-2) ) o) f,a) < ) u©) - flen <A+ ) ob)-f(,q)

peP ceC peP

|

z w(p) - f(p,q) —ZM(C) fle,q)| < e z w(p) - f(p,q)

peP cecC pEP




g-Coreset for 1-Center / Enclosing Balls

1) Choose an arbitrary point u € P

® ® o
O O
O
° O
.0 O
O
® u



g-Coreset for 1-Center / Enclosing Balls

2) Find the farthest point z € P from u

® ® ®
O O
O
° O
.0 O
O
® u



g-Coreset for 1-Center / Enclosing Balls

r = dist(u,z)
ZO0 o o °
O O
r
o O
®
o, 3



g-Coreset for 1-Center / Enclosing Balls

r = dist(u, z)




g-Coreset for 1-Center / Enclosing Balls

21
—
Z

r = dist(u, z)




g-Coreset for 1-Center / Enclosing Balls

21
—
Z

r = dist(u, z)




g-Coreset for 1-Center / Enclosing Balls

ETr

: 2 21
3) Construct a grid ofe—2 cells of
Size er X er, centered at u
@
Z Ol O
® .. © @
°e |°o

r = dist(u, z)




g-Coreset for 1-Center / Enclosing Balls

4) Pick a representative point R ——————

from each non-empty cell

ETr

O
ZO. @
® O
o © ®
®e
CX) ®5

r = dist(u, z)




g-Coreset for 1-Center / Enclosing Balls

5) C = the set of

1 .
the O (—2) representatives
€




g-Coreset for 1-Center / Enclosing Balls

5) Return C



g-Coreset for 1-Center / Enclosing Balls

Proof of Correctness

g = an arbitrary query point



g-Coreset for 1-Center / Enclosing Balls

Proof of Correctness

far(P,q) = maxdist(p,q)
peP

far(C,q) = maxdist(c,q)
ceC




g-Coreset for 1-Center / Enclosing Balls

Proof of Correctness
CSP - far(C,q) < far(P,q)




g-Coreset for 1-Center / Enclosing Balls

Proof of Correctness
CSP - far(C,q) < far(P,q)

Need to proof : °
far(P,q) — far(C,q) <0(e)far(P, .o




g-Coreset for 1-Center / Enclosing Balls

Proof of Correctness

far(P,q) < far(C,q) + O(er)

/|




g-Coreset for 1-Center / Enclosing Balls

Proof of Correctness
Main observation:

Every ball that covers u and z, has a diameter of at least 7.

r < 2far(P,q)

!

O(er) < 0(e)far(P,q)




g-Coreset for 1-Center / Enclosing Balls

Proof of Correctness

far(P,q) < far(C,q) + O(er)
° < far(C,q) + O(e)far(P,q)

) o

\
\
o Jer < 0@far(P,q)




g-Coreset for 1-Center / Enclosing Balls

Smaller Coreset

1) Choose an arbitrary point u € P

Ce©



g-Coreset for 1-Center / Enclosing Balls

Smaller Coreset

2T .
2) Draw a “star” of (?) lines around u




g-Coreset for 1-Center / Enclosing Balls

Smaller Coreset

3) P’ := Projection of P onto the lines




g-Coreset for 1-Center / Enclosing Balls

Smaller Coreset

4) C := union of endpoints on the lines




g-Coreset for 1-Center / Enclosing Balls

Smaller Coreset
5) Return C




g-Coreset for 1-Center / Enclosing Balls

Smaller Coreset - Proof

C is a coreset for P’

=

P’ IS a coreset fOr P (Large coreset but only few lines)

C is a coreset for P (Transitive Property)



Claim: C is a coreset for P’

%
O




Claim: C is a coreset for P’
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P;" := intersection of P’
with the i-th line




Claim: C is a coreset for P’

. . P'=eUe®

P;" := intersection of P’
with the i-th line

p C,=P'NC




Claim: C is a coreset for

P;" := intersection of P’
with the i-th line

C; is a coreset for P;




Claim: C is a coreset for

P;" := intersection of P’
with the i-th line

C; is a coreset for P;

‘ (Union Rule)

C == U;C; isacoreset for P' := U, P;




Claim: P’ is a coreset for P

q = an arbitrary query point




Claim: P’ is a coreset for P

q = an arbitrary query point
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Claim: P’ is a coreset for P

q = an arbitrary query point

CcCcpP - < < a‘r(P’q)

*M
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Claim: P’ is a coreset for P

Need to prove:

far(P,q) — far(P',q) < efar(P,q)

o 'faT(P,Q) .

x .
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% [ar(P', q)
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Claim: P’ is a coreset for P

Need to prove:
far(P,q) — far(P',q) < efar(P,q)
far(P',q) — far(P,q) < efar(P,q)

o 'faT(P,Q) .
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Claim: P’ is a coreset for P

Let far(P, q) = dist(p, q)

p' := the projection of p on the “star”




Claim: P’ is a coreset for P

Let far(P, q) = dist(p, q)

p' := the projection of p on the “star”

farP.q) = farPg), \ /
< far(P,q) — dist(p’, g /.1

< dist(p,p’) M
far . P

q




Claim: P’ is a coreset for P

Let far(P',q) = dist(p’, q)

p := the point whose projection is p’

Il

far(P',q) — far(P,q)
< far(P',q) — dist(p, q) .
< dist(p,p") *




Bounding dist(p,p")

p' = the projection of p on the “star”




Bounding dist(p, ")

p' := the projection of p on the “star”

dist(p,p’) = sina - dist(u, p)
< 0(e) - dist(u, p)




Bounding dist(p,p")

p' := the projection of p on the “star” Z

dist(p,p’) = sina - dist(u, p)
< 0(¢) - dist(u,p)
<0(e)-r

r := maxdist(u,
na (u,p)



Bounding dist(p,p")

Main observation:
Every ball that covers u and z, has a diameter of at least r

r<2far(P,q)

Il

O(er) < 0(e)far(P,q)




Bounding dist(p,p")

p' := the projection of p on the “star” Z

dist(p,p’) = sina - dist(u,p)
< 0(e) - dist(u,p)
<0(e)-r
< 0(e)- far(P,q)

r = maxdist(u,
nax dist(u, p)




