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Traditional Measurements

Input size: n

Running time: t n

Memory (space): s n

In 𝐶𝑆 and in this class we use the "𝑂“ notation:
- We do not try to optimize constants.

𝑛 → ∞ (justifies not handling constants).

“Memory”: usually refers to RAM. Might also be HDD.
- Memory for running an algorithm might be much larger than 𝑛 (the input size).



Big data Input

Data dimensionality (# of features): 𝑑

Data sparsity: 𝑠

n = # of points seen so far (→infinity)

M = # of machines

update (insertion/deletion) time

Per coordinate/item

𝑛
0 0 0 1 0 0 1 0 0 0 0 0 . . . 0 1

𝑑

𝑠
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▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).
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Processing units

Can be:
▪ Threads 

▪ Shard memory (centralized)
▪ Machines (network, cloud)

▪ Distributed Data
▪ Possible Graph of Communication

▪ GPU (limited parallel local computations)
▪ IoT – low energy and weak computations: Arduino, Rpie

▪ Sensors that collect a lot of data, usually to the web
▪ Real-Time: Face recognition (sec), Quadcopters (msec), Video Stre



Computation models

Dynamic-Model:

Data

Web / HDD

Updated 
Model

Instant 
update

Old model

Insert

Delete

▪ Off-line
▪ Streaming (insertions only)
▪ Dynamic Data (+ deletions)

▪ Sliding window 
▪ Turn-style model (coordinates updates)
▪ Kinematic data (moving points)

Memory Computer / Cloud

𝐥𝐨𝐠𝒏

Computation unit



Motivation

New computation models

- Big Data

- Streaming real-time data

- Distributed data

Limited hardware

- Computation: IoT, GPU

- Energy: smartphones, drones

Common solution:

- New optimization algorithms



How to handle

all these new computation models?

• Possible approach: 

– design new learning/optimization algorithms under the new constraints

• In this class:

– Use data summarization/reduction (called core-set)

– Solve problem on coreset using existing algorithms



Data summarization via Core-sets

f(       ) f(       )

Less:

Time 

Memory, 

Energy

Cost, …



Definition: Let 

➢𝑃 be a set of 𝑛 elements.

➢𝑄 be a set of possibly infinite elements / queries.

➢𝜔: 𝑃 → 0,∞ . 

➢𝑓: 𝑃 × 𝑄 → ℝ be a cost function.

The tuple 𝑃,𝜔, 𝑄, 𝑓 is called a query space.

➢ The cost of a query 𝑞 ∈ 𝑄 is defined by

ҧ𝑓 𝑃, 𝜔, 𝑞 ≔ ෍

𝑝∈𝑃

𝜔 𝑝 ⋅ 𝑓 𝑝, 𝑞

Query Space



Problem: One mean

➢𝑃 = p1, ⋯ , 𝑝𝑛 ⊆ ℝ𝑑.

➢𝑄 = ℝ𝑑 (every possible point in ℝ𝑑).

➢𝜔: 𝑃 → 0,∞ . 

➢𝑓 𝑝, 𝑞 = 𝑝 − 𝑞 2 for every 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄.

The tuple 𝑃,𝜔, 𝑄, 𝑓 is our query space.

Query Space

𝑃

q

𝑤 𝑝1

𝑤 𝑝2

𝑤 𝑝17 𝑝1

𝑝2

𝑝17

𝑝2 − 𝑞 2



Problem: Points to Hyperplanes

➢𝐴 =

−𝑎1 −
⋮

−𝑎𝑛 −
∈ 𝑅𝑛×𝑑 (𝑛 points in 𝑅𝑑)

➢S = 𝑅𝑑 (The normals of hyperplanes in 𝑅𝑑)

➢𝜔 a = 1 for every 𝑎 ∈ 𝐴. 

➢𝑓 𝑎, 𝑥 = 𝑎𝑥 2 for every 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝑆.

→෍

𝑖=1

𝑛

𝜔 𝑎𝑖 ⋅ 𝑓 𝑎𝑖 , 𝑥 = 𝐴𝑥 2

The tuple A,𝜔, S, 𝑓 is our query space.

Query Space



Exact coresets

Exact coreset: 𝐶, 𝜇 is an exact coreset (usually 𝐶 ⊆ 𝑃, 𝜇: 𝐶 → 0,∞ ), 
if for every 𝑞 in 𝑄 we have that the sum of the cost function on 𝑃 with 
query 𝑞 is the same as the sum of the cost function on 𝐶 with query 𝑞.

∀𝒒 ∈ 𝑸:

෍

𝒑∈𝑷

𝒘 𝒑 ⋅ 𝒇(𝒑, 𝒒) =෍

𝒄∈𝑪

𝝁 𝒄 ⋅ 𝒇(𝒄, 𝒒)

▪ Input: Query space (𝑃,𝑤, 𝑄, 𝑓)



Exact Coreset - Example:
Points to Hyperplanes

Reminder: QR Decomposition

Decomposition of 𝐴 ∈ 𝑅𝑛×𝑑 into 𝐴 = 𝑄𝑅 where:

𝑄 ∈ 𝑅𝑛×𝑑 is an orthogonal matrix and 𝑅 ∈ 𝑅𝑑×𝑑 is an upper triangular matrix.



Exact Coreset via QR-Decomposition

Input: Points−Hyperplane Query Space: 𝐴,𝑤, 𝑆, 𝑓 .

Goal: Compute 𝑅 ∈ ℝ𝑑×𝑑 such that 𝑓 𝐴, 𝑥 = 𝑓(𝑅, 𝑥) for every 𝒙 ∈ 𝑺.

Let 𝑄, 𝑅 be the 𝑄𝑅-decomposition of 𝐴. For every 𝑥 ∈ 𝑆 it holds that: 

𝒇 𝑨, 𝒙 = 𝑨𝒙 𝟐 = 𝑸𝑹𝒙 𝟐 = 𝑹𝒙 𝟐 = 𝒇(𝑹, 𝒙)

Hence, the rows of 𝑅 are an exact coreset (yet not a subset of the data) for the 
Points-Hyperplane Query Space problem since:

∀𝑥 ∈ 𝑆:
𝒇 𝑨, 𝒙 = 𝑨𝒙 𝟐 = 𝑹𝒙 𝟐 = 𝒇(𝑹, 𝒙)

𝐴 = 𝑄𝑅 𝑄𝑇𝑄 = 𝐼

𝐴 ∈ ℝ𝑛×𝑑 𝑅 ∈ ℝ𝑑×𝑑



Exact Coreset - Example

Problem: 1-mean

Input: The query space 𝑃,𝑤, 𝑄, 𝑓 of 1-mean. We currently assume that 
𝑤 𝑝 = 1 for every 𝑝 ∈ 𝑃.

Goal: Compute a pair 𝐶, 𝜇 such that

∀𝒙 ∈ 𝑸

෍

𝒑∈𝑷

𝟏 ⋅ 𝒑 − 𝒙 𝟐 =෍

𝒄∈𝑪

𝝁 𝒄 ⋅ 𝒄 − 𝒙 𝟐

x



෍

𝒑∈𝑷

𝒑 − 𝒙 𝟐 = ෍

𝑝∈𝑃

𝑝 2 + 𝑥 2 − 2𝑝𝑇𝑥 = ෍

𝑝∈𝑃

𝑝 2 +෍

𝑝∈𝑃

𝑥 2 − 2෍

𝑝∈𝑃

𝑝𝑇𝑥

= ෍

𝑝∈𝑃

𝑝 2 + 𝒏 ⋅ 𝒙 𝟐 − 𝟐 ෍

𝑝∈𝑃

𝑝𝑇 𝒙

Exact 1-𝑚𝑒𝑎𝑛 using 3 first moments:

The statistics that define the set 𝑃

Problem: 1-mean

Exact Coreset - Example

Solution #1: 
Store the three statistics in memory. 

However, they do not satisfy our definition of 
Exact Coreset!



Solution #2:

Try to find a an exact coreset (subset) 𝐶 of the data and a weights 𝜔: 𝐶 → 𝑅 such that:

෍

𝑝∈𝑃

𝑝 2 =෍

𝑐∈𝐶

𝜔(𝑐) 𝑐 2

P = 𝒏 =෍

𝑐∈𝐶

𝜔(𝑐)

෍

𝑝∈𝑃

𝑝𝑇 =෍

𝑐∈𝐶

𝜔(𝑐)𝑐𝑇

Problems with solution #1:

- If the input data is sparse, the vector σ𝒑∈𝑷𝒑
𝑻 might not be sparse!

- The vector σ𝒑∈𝑷𝒑
𝑻 is not part of the input data. We prefer our representatives to be a 

subset of the input data!

Exact Coreset - Example



1-mean queries

Solution #2:

1) Build new vectors in 𝑅𝑑+2:

𝒑𝒊
′ =

𝒑𝒊
𝒑𝒊

𝟐

𝟏

2) Find a 𝐿𝑖𝑛𝑒𝑎𝑟 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 of the mean of 𝑃. This combination is a subset 𝐶 ⊆ 𝑃
of the vectors of size 𝐶 = 𝑑 + 2 and a set 𝜇 of 𝑑 + 2 weights. 
The set 𝐶 satisfies the three properties needed.

Problem with solution #2:

The weights are not bounded (might be negative and huge → numerical problems).



Preliminaries - Convex combination

A 𝑐𝑜𝑛𝑣𝑒𝑥 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 is a linear combination of 
points where all coefficients are non-negative and sum 
to 1.

A 𝑐𝑜𝑛𝑣𝑒𝑥 𝑟𝑒𝑔𝑖𝑜𝑛 is a region where, for every pair of 
points within the region, every point on the straight line 
segment that joins the pair of points is also within the 
region.

A 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙 of a set 𝑃 is is the smallest convex set 
that contains 𝑃.

Every point 𝑥 in a convex hull of a set of points 𝑃 can 
be written as a convex combination of a finite number 
of points in 𝑃.

𝑥

𝑝1 𝑝2

𝑝5

𝑝4𝑝3

𝑝6

𝜆1 𝜆2

𝜆3 𝜆4

𝑥 = ෍

𝑖=1

5

𝜆𝑖𝑝𝑖 ,

𝜆𝑖 ≥ 0,෍

𝑖=1

5

𝜆𝑖 = 1

𝜆5



1-mean queries

Solution #3:

1) Build new vectors in 𝑅𝑑+2:

𝒑𝒊
′ =

𝒑𝒊
𝒑𝒊

𝟐

𝟏

2) Find a 𝐶𝑜𝑛𝑣𝑒𝑥 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 of the mean of 𝑃 using 𝐶𝑎𝑟𝑎𝑡ℎ𝑒𝑜𝑑𝑜𝑟𝑦′𝑠 𝑡ℎ𝑒𝑜𝑟𝑒𝑚. 
This combination is a subset 𝐶 ⊆ 𝑃 of the vectors of size 𝐶 = 𝑑 + 3 and a set 
𝜇 of 𝑑 + 3 positive weights that sum to one. 
The set 𝐶 satisfies the three properties needed.



Caratheodory’s theorem

“If a point 𝑥 ∈ 𝑅𝑑 lies in the convex hull of a set 𝑃, there is a 
subset 𝑃′of 𝑃 consisting of 𝑑 + 1 or fewer points such that 𝑥 lies in the convex 
hull of 𝑃′.”

𝑥 = ෍

𝑖=1

3

𝜆𝑖𝑝𝑖 ,

𝜆𝑖 ≥ 0,෍

𝑖=1

3

𝜆𝑖 = 1

𝑥

𝑝4𝑝3

𝑝6

𝜆1 𝜆2

𝜆3

𝑝1 𝑝2

𝑝5𝑝5



Caratheodory’s theorem - intuition

𝜆1𝑝1

𝑥

Assume that 𝑥
is the origin.

𝜆2𝑝2

𝜆3𝑝3

𝜆4𝑝4

𝜇4𝑝4

𝜇1𝑝1

𝜇2𝑝2
𝜇3𝑝3

𝝀𝟏
′ = 𝝀𝟏 − 𝜶𝝁𝟏=0

𝛼𝜇2𝑝2

𝛼𝜇3𝑝3

𝛼𝜇4𝑝4

෍𝜆𝑖 = 1,෍𝜇𝑖 = 0,෍𝜇𝑖𝑝𝑖 = 0.

→෍𝛼𝜇𝑖𝑝𝑖 = 𝛼෍𝜇𝑖𝑝𝑖 = 0

→෍𝜆𝑖′ = ෍ 𝜆𝑖 − 𝛼𝜇𝑖

=෍𝜆𝑖 − 𝛼෍𝜇𝑖 = 1

Linear combination: 𝜇𝑖. One of them is negative.

Convex combination: 𝜆𝑖. All are positive.



1-mean queries

Solution #3:

Using 𝐶𝑎𝑟𝑎𝑡ℎ𝑒𝑜𝑑𝑜𝑟𝑦′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 we can represent the vector

σ𝒊=𝟏
𝒏 𝒑𝒊

′

𝒏
=

σ𝒊=𝟏
𝒏

𝒑𝒊

𝒑𝒊
𝟐

𝟏

𝒏
=

σ𝒊=𝟏
𝒏 𝒑𝒊

σ𝒊=𝟏
𝒏 𝒑𝒊

𝟐

𝒏

𝒏

by a set of (𝑑 + 3) input points and (𝑑 + 3) weights.

0 0 0 𝟏 0 0 0 0 0 0 0 0 . . . 0 𝟏

0 0 0 𝟏 0 0 0 0 0 0 0 0 . . . 0 𝟏

0 0 0 𝟏 0 0 0 0 0 0 0 0 . . . 0 𝟏

𝜆1 ∗

𝜆2 ∗

𝜆𝑑+3 ∗

Saved in memory

𝑝′1

𝑝′2

𝑝′𝑑+3



1-center / minimum enclosing ball

▪ Given a set of 𝑛 points P in 𝑅𝑑,  find the point 𝑞 ∈ 𝑅𝑑 that minimizes:

𝒇𝒂𝒓 𝑷, 𝒒 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝒒

x

Motivation:
Where should we place an antenna if the price paid is the 

antenna’s distance to the farthest customer?



Minimum enclosing ball

Optimal solution in 𝑅𝑑:

Claim: A sphere in 𝑅𝑑 is determined by 𝑑 + 1.

Algorithm: Exhaustive search over all 
𝑛

𝑑+1
tuples of 𝑑 + 1 points.

Running time: 𝑛𝑂 𝑑 .



Minimum enclosing ball - heuristic

Hough transform:

-A heuristic for finding a circle that best fits the data.

-Divides the circle parametric space into small fixed-size cells (grid) with no optimality 
guarantee. (Assumes circle radius is in range [𝑟1, 𝑟2]).

𝑛 𝑝𝑜𝑖𝑛𝑡𝑠
𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟 ∈ 𝑟1, 𝑟2

𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑝𝑜𝑖𝑛𝑡 𝑎, 𝑏 ∈ 𝑐𝑖𝑟𝑐 𝑥, 𝑦, 𝑟
𝐴 𝑎, 𝑏, 𝑟 + +;

𝑎

𝑏

𝑟
𝐴

𝑓𝑜𝑟
𝑒𝑎𝑐ℎ
𝑝𝑜𝑖𝑛𝑡
(𝑥, 𝑦)

𝐿𝑒𝑡 𝑐𝑖𝑟𝑐 𝑥, 𝑦, 𝑟 = 𝑎, 𝑏 𝑎 − 𝑥, 𝑏 − 𝑦 = 𝑟}.

Assume every data point is a circle center, 

and “vote” for each point on that circle.

𝐹𝑖𝑛𝑑 𝑔𝑙𝑜𝑏𝑎𝑙
𝑚𝑎𝑥𝑖𝑚𝑎 𝑜𝑓 𝐴

The global maxima are 

the “best fitting” circles 

(the circles with maximal 

number of votes)



Hough transform - example

𝑥

𝑦

𝑥

𝑦

1 3 4

2
3

𝑟 = 3

0

2 0 𝟑

2

1

2

3

4

1 2 3 4

𝐴𝑟=3

4



Problem: One center

➢𝑃 = p1, ⋯ , 𝑝𝑛 ⊆ ℝ𝑑.

➢𝑄 = ℝ𝑑 (every possible point in ℝ𝑑).

➢𝜔 𝑃 = 1 for every 𝑝 ∈ 𝑃. 

➢𝑓ar 𝑃, 𝑞 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝒒 for every 𝑞 ∈ 𝑄.

The tuple 𝑃,𝜔, 𝑄, 𝑓𝑎𝑟 is our query space.

Query Space

𝑃

q

𝑝1

𝑝2

𝑝17



1-center

Input: The query space (𝑃,𝑤, 𝑄, 𝑓𝑎𝑟) of one center.

Special case:

Exact coreset for 𝟏-𝒄𝒆𝒏𝒕𝒆𝒓 queries when 𝑷 ⊂ 𝑹 and 𝒒 ∈ 𝑹𝒅:

x

The farthest point from every query 𝒒 ∈ 𝑹𝒅 is one of the edge points!



𝜀-Coresets

Let 𝐴 be a set of elements. Let 𝑃,𝜔, 𝑄, 𝑓 be a query space where 𝑃
⊆ 𝐴.

An 𝜀-coreset is a set 𝐶, 𝜇 , where 𝐶 ⊆ 𝐴, 𝜇: 𝐶 → 0,∞ , such that 
for every 𝑞 ∈ 𝑄 we have that:

1 − 𝜀 ⋅ ෍

𝑝∈𝑃

𝜔 𝑝 ⋅ 𝑓 𝑝, 𝑞 ≤෍

𝑐∈𝐶

𝜇 𝑐 ⋅ 𝑓 𝑐, 𝑞 ≤ 1 + 𝜀 ⋅ ෍

𝑝∈𝑃

𝜔 𝑝 ⋅ 𝑓 𝑝, 𝑞

෍

𝑝∈𝑃

𝜔 𝑝 ⋅ 𝑓 𝑝, 𝑞 −෍

𝑐∈𝐶

𝜇 𝑐 ⋅ 𝑓 𝑐, 𝑞 ≤ 𝜀 ⋅ ෍

𝑝∈𝑃

𝜔 𝑝 ⋅ 𝑓 𝑝, 𝑞



𝜀-Coreset for 1-Center / Enclosing Balls

1) Choose an arbitrary point 𝑢 ∈ 𝑃

𝑢



2) Find the farthest point 𝑧 ∈ 𝑃 from 𝑢

𝑢

𝑧

𝜀-Coreset for 1-Center / Enclosing Balls



𝑟 ≔ 𝑑𝑖𝑠𝑡(𝑢, 𝑧)

𝑢

𝑧

𝑟

𝜀-Coreset for 1-Center / Enclosing Balls



𝑟 ≔ 𝑑𝑖𝑠𝑡(𝑢, 𝑧)

𝑧

𝑢

𝑟

𝜀-Coreset for 1-Center / Enclosing Balls



𝑟 ≔ 𝑑𝑖𝑠𝑡(𝑢, 𝑧)

𝑧

𝑢

𝑟

2𝑟

𝜀-Coreset for 1-Center / Enclosing Balls



𝑟 ≔ 𝑑𝑖𝑠𝑡(𝑢, 𝑧)

𝑧

𝑢

𝜖𝑟

2𝑟

𝜀-Coreset for 1-Center / Enclosing Balls



3) Construct a grid of 
2

𝜖2
cells of 

size 𝜖𝑟 × 𝜖𝑟, centered at 𝑢
𝑧

𝑢

𝜖𝑟

2𝑟

𝑟 ≔ 𝑑𝑖𝑠𝑡(𝑢, 𝑧)

𝜀-Coreset for 1-Center / Enclosing Balls



4) Pick a representative point

from each non-empty cell

𝑧

𝑢

𝜖𝑟

2𝑟

𝑟 ≔ 𝑑𝑖𝑠𝑡(𝑢, 𝑧)

𝜀-Coreset for 1-Center / Enclosing Balls



5) 𝐶 ≔ the set of 

the O
1

𝜖2
representatives 

𝜀-Coreset for 1-Center / Enclosing Balls



5) Return  𝐶

𝜀-Coreset for 1-Center / Enclosing Balls



𝜀-Coreset for 1-Center / Enclosing Balls
Proof of Correctness

𝑞 ≔ an arbitrary query point

𝑞



𝑓𝑎𝑟 𝑃, 𝑞 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡(𝑝, 𝑞)

𝑓𝑎𝑟 𝐶, 𝑞 = max
𝑐∈C

𝑑𝑖𝑠𝑡(𝑐, 𝑞)

𝑞

𝜀-Coreset for 1-Center / Enclosing Balls
Proof of Correctness



𝐶 ⊆ 𝑃 → 𝑓𝑎𝑟 𝐶, 𝑞 ≤ 𝑓𝑎𝑟 𝑃, 𝑞

𝑞

𝜀-Coreset for 1-Center / Enclosing Balls
Proof of Correctness



𝐶 ⊆ 𝑃 → 𝑓𝑎𝑟 𝐶, 𝑞 ≤ 𝑓𝑎𝑟 𝑃, 𝑞

Need to proof :

𝑓𝑎𝑟 𝑃, 𝑞 − 𝑓𝑎𝑟 𝐶, 𝑞 ≤ 𝑂(𝜖)𝑓𝑎𝑟 𝑃, 𝑞

𝑞

𝜀-Coreset for 1-Center / Enclosing Balls
Proof of Correctness



𝑓𝑎𝑟 𝑃, 𝑞 ≤ 𝑓𝑎𝑟 𝐶, 𝑞 + 𝑂 𝜖𝑟

𝜖𝑟

𝑞

𝜀-Coreset for 1-Center / Enclosing Balls
Proof of Correctness



Main observation:

Every ball that covers 𝑢 and 𝑧, has a diameter of at least 𝑟.

𝑟 ≤ 2𝑓𝑎𝑟(𝑃, 𝑞)

𝑧

𝑢

𝑟

𝑞𝑂(𝜖𝑟) ≤ 𝑂(𝜖)𝑓𝑎𝑟(𝑃, 𝑞)

𝜀-Coreset for 1-Center / Enclosing Balls
Proof of Correctness



𝑓𝑎𝑟 𝑃, 𝑞 ≤ 𝑓𝑎𝑟 𝐶, 𝑞 + 𝑂 𝜖𝑟

≤ 𝑓𝑎𝑟 𝐶, 𝑞 + 𝑂(𝜖)𝑓𝑎𝑟(𝑃, 𝑞)

𝜖𝑟 ≤ 𝑂(𝜖)𝑓𝑎𝑟(𝑃, 𝑞)

𝑞

𝜀-Coreset for 1-Center / Enclosing Balls
Proof of Correctness



 

 

 

 

  

 

 

 

    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

u

1) Choose an arbitrary point 𝑢 ∈ 𝑃

Smaller Coreset
𝜀-Coreset for 1-Center / Enclosing Balls



2) Draw a “star” of (
2𝜋

𝜖
) lines around 𝑢

 

 

 

 

  

 

 

 

    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

𝑢

𝜖

Smaller Coreset
𝜀-Coreset for 1-Center / Enclosing Balls



 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

 
 

 

 

 

 

 

 

3) 𝑃′ ≔ Projection of 𝑃 onto the lines

𝑢

Smaller Coreset
𝜀-Coreset for 1-Center / Enclosing Balls



 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

 
 

 

 

 

4) C ≔ union of endpoints on the lines

𝑢

Smaller Coreset
𝜀-Coreset for 1-Center / Enclosing Balls



5) Return C

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Smaller Coreset
𝜀-Coreset for 1-Center / Enclosing Balls



𝐶 is a coreset for   𝑃′

𝑃′ is a coreset for   𝑃

𝐶 is a coreset for   𝑃

(Large coreset but only few lines)

(Transitive Property)

Smaller Coreset - Proof
𝜀-Coreset for 1-Center / Enclosing Balls



 

 

 

Claim:  𝐶 is a coreset for 𝑃′

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

 
 

 

 

 

𝐶 ≔

𝑃′ ≔ ∪



Claim: 𝐶 is a coreset for   𝑃′

𝐶 ≔

𝑃′ ≔ ∪

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

 
 

 

 

 

 

 

 

 

  

 

 𝑃′ ≔

𝑃𝑖′ ≔

∪

𝑃𝑖′

𝑃𝑖′

𝑃𝑖′ ≔ intersection of 𝑃′
with the i-th line



 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

  

 

 

Claim:  𝐶 is a coreset for   𝑃′

∪𝑃𝑖′ ≔

𝐶𝑖 ≔

𝐶𝑖

𝐶𝑖

𝑃𝑖′ ≔ intersection of 𝑃′
with the i-th line

𝐶𝑖 ≔𝑃′ ∩ 𝐶



Claim:  𝐶 is a coreset for   𝑃′

𝐶𝑖

𝐶𝑖

𝑃𝑖′ ≔ intersection of 𝑃′
with the i-th line

𝐶𝑖 ≔𝑃′ ∩ 𝐶

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 (By proof for d=1)

𝐶𝑖 is a coreset for 𝑃𝑖



 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

 
 

 

 

 

 

 

Claim:  𝐶 is a coreset for   𝑃′

𝑃1𝑃𝑖′ ≔ intersection of 𝑃′
with the i-th line

𝐶𝑖 ≔𝑃′ ∩ 𝐶

(By proof for d=1)

𝐶𝑖 is a coreset for 𝑃𝑖

(Union Rule)

𝐶 ≔ 𝑖ڂ 𝐶𝑖 is a coreset for 𝑃′ ≔ 𝑖𝑃𝑖ڂ

𝑃2

𝑃3

𝑃4

𝑃5

𝑃2𝜋
𝜖



Claim:  𝑃′ is a coreset for   𝑃

𝑞 ≔ an arbitrary query point
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𝑃 ≔

𝑃′ ≔
𝑞



Claim:  𝑃′ is a coreset for   𝑃

𝑞 ≔ an arbitrary query point

 

 

𝑃 ≔

𝑃′ ≔
𝑞

𝑓𝑎𝑟(𝑃′, 𝑞)



Claim:  𝑃′ is a coreset for   𝑃

𝑞 ≔ an arbitrary query point

 

 

𝑃 ≔

𝑃′ ≔
𝑞

𝐶 ⊆ 𝑃 → 𝑓𝑎𝑟 𝐶, 𝑞 ≤ 𝑓𝑎𝑟 𝑃, 𝑞

𝑓𝑎𝑟(𝑃′, 𝑞)



Claim:  𝑃′ is a coreset for   𝑃

Need to prove:

 

 

𝑃 ≔

𝑃′ ≔
𝑞

𝑓𝑎𝑟 𝑃, 𝑞 − 𝑓𝑎𝑟 𝑃′, 𝑞 ≤ 𝜖𝑓𝑎𝑟 𝑃, 𝑞

𝑓𝑎𝑟(𝑃′, 𝑞)



Claim:  𝑃′ is a coreset for   𝑃

Need to prove:

 

 

𝑃 ≔

𝑃′ ≔
𝑞

𝑓𝑎𝑟 𝑃, 𝑞 − 𝑓𝑎𝑟 𝑃′, 𝑞 ≤ 𝜖𝑓𝑎𝑟 𝑃, 𝑞

𝑓𝑎𝑟(𝑃′, 𝑞)

𝑓𝑎𝑟 𝑃′, 𝑞 − 𝑓𝑎𝑟 𝑃, 𝑞 ≤ 𝜖𝑓𝑎𝑟 𝑃, 𝑞



𝑞
𝑝

𝑝′

Claim:  𝑃′ is a coreset for   𝑃

Let 𝑓𝑎𝑟 𝑃, 𝑞 = 𝑑𝑖𝑠𝑡(𝑝, 𝑞)

𝑝′ ≔ the projection of 𝑝 on the “star”



𝑞
𝑝

𝑝′

Claim:  𝑃′ is a coreset for   𝑃

Let 𝑓𝑎𝑟 𝑃, 𝑞 = 𝑑𝑖𝑠𝑡(𝑝, 𝑞)

𝑝′ ≔ the projection of 𝑝 on the “star”

𝑓𝑎𝑟 𝑃, 𝑞 − 𝑓𝑎𝑟 𝑃′, 𝑞
≤ 𝑓𝑎𝑟 𝑃, 𝑞 − 𝑑𝑖𝑠𝑡 𝑝′, 𝑞
≤ 𝑑𝑖𝑠𝑡 𝑝, 𝑝′



Claim:  𝑃′ is a coreset for   𝑃

Let 𝑓𝑎𝑟 𝑃′, 𝑞 = 𝑑𝑖𝑠𝑡(𝑝′, 𝑞)

𝑝 ≔ the point whose projection is 𝑝′

𝑞

𝑝
𝑝′

𝑓𝑎𝑟 𝑃′, 𝑞 − 𝑓𝑎𝑟 𝑃, 𝑞
≤ 𝑓𝑎𝑟 𝑃′, 𝑞 − 𝑑𝑖𝑠𝑡 𝑝, 𝑞
≤ 𝑑𝑖𝑠𝑡 𝑝, 𝑝′



Bounding 𝑑𝑖𝑠𝑡 𝑝, 𝑝′

𝑝′ ≔ the projection of 𝑝 on the “star”

𝑝
𝑝′

𝑢
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Bounding 𝑑𝑖𝑠𝑡 𝑝, 𝑝′

𝑝′ ≔ the projection of 𝑝 on the “star”

𝑝
𝑝′

𝛼𝑑𝑖𝑠𝑡 𝑝, 𝑝′ = sin 𝛼 ⋅ 𝑑𝑖𝑠𝑡 𝑢, 𝑝
≤ 𝑂 𝜖 ⋅ 𝑑𝑖𝑠𝑡(𝑢, 𝑝)

𝑢



 

 

 

 

  

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Bounding 𝑑𝑖𝑠𝑡 𝑝, 𝑝′

𝑝′ ≔ the projection of 𝑝 on the “star”

𝑑𝑖𝑠𝑡 𝑝, 𝑝′ = sin 𝛼 ⋅ 𝑑𝑖𝑠𝑡 𝑢, 𝑝
≤ 𝑂 𝜖 ⋅ 𝑑𝑖𝑠𝑡 𝑢, 𝑝
≤ 𝑂 𝜖 ⋅ 𝑟

𝑧

𝑟 ≔ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡(𝑢, 𝑝)

𝑟

𝑢

𝑝



Bounding 𝑑𝑖𝑠𝑡 𝑝, 𝑝′

Main observation:
Every ball that covers 𝑢 and 𝑧, has a diameter of at least 𝑟

𝑧
𝑟

𝑢

𝑞

𝑟 ≤ 2𝑓𝑎𝑟(𝑃, 𝑞)

𝑂 𝜖𝑟 ≤ 𝑂 𝜖 𝑓𝑎𝑟(𝑃, 𝑞)



 

 

 

 

  

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Bounding 𝑑𝑖𝑠𝑡 𝑝, 𝑝′

𝑝′ ≔ the projection of 𝑝 on the “star”

𝑑𝑖𝑠𝑡 𝑝, 𝑝′ = sin 𝛼 ⋅ 𝑑𝑖𝑠𝑡 𝑢, 𝑝
≤ 𝑂 𝜖 ⋅ 𝑑𝑖𝑠𝑡 𝑢, 𝑝
≤ 𝑂 𝜖 ⋅ 𝑟
≤ 𝑂 𝜖 ⋅ 𝑓𝑎𝑟(𝑃, 𝑞)

𝑧

𝑟 ≔ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡(𝑢, 𝑝)

𝑟

𝑢

𝑝


