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Big Data    Big Noise
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GPS Compression
[Feldman, Wu, Julian, Sung & Rus.]

• Quadrobot collects data using attached smartphone

• Terabytes  

= 4 hours of image snapshots from Quadrobot

• Challenge: Real-time compression
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𝑘-Segment mean
The 𝑘-segment 𝑓∗that minimizes the fitting cost 
from points to a d-dimensional signal
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𝑘 − Segment Queries

Input: d-dimensional signal P over time
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Input: d-dimensional signal P over time
Query: k segments over time
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𝑘 − Segment Queries

k-Piecewise linear function f over t



Input: d-dimensional signal P over time
Query: k segments over time
Output: Sum of squared distances from P

𝑘 − Segment Queries
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Coreset
A weighted set 𝐶 such that 
for every k-segment f :

cost 𝑃, 𝑓 ~ costw 𝐶, 𝑓
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Observation:
No small coreset 𝐶 ⊂ 𝑃 exists 
for k-segment queries



Input P: n points on the x-axis
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1 2 3 4 6 7 8 9 10 11
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Coreset C: all points except one 

Input P: n points on the x-axis



Input P: n points on the x-axis

Coreset C: all points except one 

Query f:     covers all except this one
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Input P: n points on the x-axis

Coreset C: all points except one 

Query f:     covers all except this one

Cost(𝑃, 𝑓) > 0

Cost(𝐶, 𝑓) = 0



Input P: n points on the x-axis

Coreset C: all points except one 

Query f:     covers all except this one

Cost(𝑃, 𝑓) > 0 Unbounded factor 
approximation
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Cost(𝐶, 𝑓) = 0



For every point p: 

Sensitivity(p) = max
𝑞∈𝑄

𝑑𝑖𝑠𝑡(𝑝,𝑞)

σ𝑝′ 𝑑𝑖𝑠𝑡(𝑝′,𝑞)
= 1

Total sensitivities: n



Definition: Coreset
A weighted set 𝐶 ⊂ 𝑃 such that 
for every k-segment f :

cost 𝑃, 𝑓 ~ costw 𝐶, 𝑓
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Observation: 
Points on a segment can be stored  by 
the two indexes of their end-points
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1 2 3 4 5 6 7 8 9 10 11
t

Observation: 
Points on a segment can be stored  by 
the two indexes of their end-points
and the slope of the segment



1 2 3 4 5 6 7 8 9 10 11
t

Observation: 
Points on a segment can be stored  by 
the two indexes of their end-points
and the slope of the segment



Observation 2: 
We can solve optimally for 𝑘 = 1 (1 segment) 
by solving a simple linear regression problem 
on the set of points.

𝑝1 𝑝2

𝑝3 𝑝4

𝑝5

𝑝6

𝑝7

𝑝8 Best fitted line for 
the set 𝑝1, ⋯ , 𝑝8



Coreset for k-segment Mean

Definition: (𝒌, 𝜺)-coreset

Let 𝑃 ⊆ ℝ𝑑+1 be a signal, 𝑘 ≥ 1 and 𝜀 > 0. 

Let 𝐷 be a set of items, and 𝑐𝑜𝑠𝑡′(𝐷,⋅) be a function that maps every 𝑘-segment 𝑓 to a non-

negative number. Then 𝐷, 𝑐𝑜𝑠𝑡′ is a 𝑘, 𝜖 -coreset for 𝑃 if for every 𝑘-segment 𝑓 we have

1 − 𝜀 𝑐𝑜𝑠𝑡 𝑃, 𝑓 ≤ 𝑐𝑜𝑠𝑡′ 𝐷, 𝑓 ≤ 1 + 𝜀 𝑐𝑜𝑠𝑡 𝑃, 𝑓 .



Coreset for k-segment Mean

Definition: 𝒄𝒐𝒔𝒕′ 𝑫, 𝒇

Let 𝐷 = 𝐶𝑖 , 𝑔𝑖 , 𝑏𝑖 , 𝑒𝑖 𝑖=1
𝑚 where for every 𝑖 ∈ 𝑚 we have 𝐶𝑖 ⊆ ℝ𝑑+1, 𝑔𝑖: ℝ → ℝ𝑑 and 

𝑏𝑖 , 𝑒𝑖 ∈ ℝ such that 𝑏𝑖 ≤ 𝑒𝑖. For a 𝑘-segment 𝑓:ℝ → ℝ𝑑 and 𝑖 ∈ 𝑚 we say that 𝐶𝑖 is served by 

one segment of 𝑓 if 𝑓 𝑡 𝑏𝑖 ≤ 𝑡 ≤ 𝑒𝑖 is a linear segment. We denote by 𝐺𝑜𝑜𝑑 𝐷, 𝑓 ⊆ 𝑚 the 

union of indices 𝑖 such that 𝐶𝑖 is served by one segment of 𝑓. We also define 

𝐿𝑖 = 𝑔𝑖 𝑡 𝑏𝑖 ≤ 𝑡 ≤ 𝑒𝑖 , the projection of 𝐶𝑖 on 𝑔𝑖. We define 𝑐𝑜𝑠𝑡′ 𝐷, 𝑓 as

෍

𝑖∈𝐺𝑜𝑜𝑑(𝐷,𝑓)

𝑐𝑜𝑠𝑡 𝐶𝑖 , 𝑓 + ෍

𝑖∈ 𝑚 ∖𝐺𝑜𝑜𝑑 𝐷,𝑓

𝑐𝑜𝑠𝑡 𝐿𝑖 , 𝑓 .

See main algorithm to understand D better



Our Main Compression Theorem

Theorem:

For every discrete signal 𝑃 of 𝑛 points in 𝑅𝑑, there is a 𝑘, 𝜀 -coreset for 𝑃 of 

space 𝑂
𝑘𝑙𝑜𝑔 𝑛

𝜖2
that can be computed in the big data model, and can be 

computed in 𝑂
𝑑𝑛

𝜖4
time.

See Algorithm 𝐵𝐴𝐿𝐴𝑁𝐶𝐸𝐷𝑃𝐴𝑅𝑇𝐼𝑇𝐼𝑂𝑁.

[ACM GIS’12, with C. Sung, and D. Rus ]



K – segments Bicriteria

Input:
A signal 𝑃 ⊆ ℝ𝑑, and an 
integer 𝑘.

Output:
An (𝛼, 𝛽)-approximation 
𝑓′ to the 𝑘-segment 
mean of 𝑃.

𝛼, 𝛽 = 𝑂 log 𝑛



K – segments Algorithm
𝜎 = 𝑐𝑜𝑠𝑡 𝑃, 𝑓′

where 𝑓′ is the output of 
the Bicriteria algorithm

We will show how to compute
a 1, 𝜀 -coreset later



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖

𝑄 = 1, 𝑝1

𝑝1

𝜎 = 2



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖

𝑄 = 1, 𝑝1 , 2, 𝑝2

𝑝1

𝜎 = 2

𝑝2



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx. 

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

𝑄 = 1, 𝑝1 , 2, 𝑝2

𝑝1
𝑝2

𝜆 = 0

𝜎 = 2



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3

𝑝1
𝑝2

𝜆 = 0

𝜎 = 2

𝑝3



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx. 

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3

𝑝1
𝑝2

𝜆 = 1

𝜎 = 2

𝑝3



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3 , 4, 𝑝4

𝑝1
𝑝2

𝜆 = 1

𝜎 = 2

𝑝3
𝑝4



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx. 

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

𝑝1
𝑝2

𝜆 = 1

𝜎 = 2

𝑝3

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3 , 4, 𝑝4

𝑝4



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖

𝑝1
𝑝2

𝜆 = 1

𝜎 = 2

𝑝3

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3 , 4, 𝑝4 , 5, 𝑝5

𝑝4

𝑝5



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx. 

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

𝑝1
𝑝2

𝜆 = 5

𝜎 = 2

𝑝3
𝑝4

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3 , 4, 𝑝4 , 5, 𝑝5

𝑝5



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx. 

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

𝑝1
𝑝2

𝜆 = 5

𝜎 = 2

𝑝3
𝑝4

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3 , 4, 𝑝4 , 5, 𝑝5

𝑝5



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx. 

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

- 𝐶 = 1,
𝜖

4
-coreset 

for 𝑇.

𝑝1
𝑝2

𝜆 = 5

𝜎 = 2

𝑝3
𝑝4

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3 , 4, 𝑝4 , 5, 𝑝5

𝑝5



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx. 

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

- 𝐶 = 1,
𝜖

4
-coreset 

for 𝑇.
- 𝑔 = a linear approx. 

of 𝑇 +save endpoints.𝑝1
𝑝2

𝜆 = 5

𝜎 = 2

𝑝3
𝑝4

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3 , 4, 𝑝4 , 5, 𝑝5

𝑝5

𝑏 𝑒



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx. 

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

- 𝐶 = 1,
𝜖

4
-coreset 

for 𝑇.
- 𝑔 = a linear approx. 

of 𝑇 +save endpoints.
- 𝐷 = 𝐷 ∪ 𝐶, 𝑔, 𝑏, 𝑒 .

𝑝1
𝑝2

𝜆 = 5

𝜎 = 2

𝑝3
𝑝4

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3 , 4, 𝑝4 , 5, 𝑝5

𝑝5

𝑏 = 1 𝑒 = 4

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx. 

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

- 𝐶 = 1,
𝜖

4
-coreset 

for 𝑇.
- 𝑔 = a linear approx. 

of 𝑇 +save endpoints.
- 𝐷 = 𝐷 ∪ 𝐶, 𝑔, 𝑏, 𝑒 .

- 𝑄 = 𝑖, 𝑝𝑖 .

𝑝1
𝑝2

𝜆 = 5

𝜎 = 2

𝑝3
𝑝4

𝑄 = 5, 𝑝5

𝑝5

𝑏 = 1 𝑒 = 4

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖

𝑝1
𝑝2

𝜆 = 5

𝜎 = 2

𝑝3
𝑝4

𝑄 = 5, 𝑝5 , 6, 𝑝6

𝑝5
𝑝6

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx. 

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

𝑝1
𝑝2

𝜆 = 0

𝜎 = 2

𝑝3
𝑝4

𝑝5

𝑄 = 5, 𝑝5 , 6, 𝑝6

𝑝6

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖

𝑝1
𝑝2

𝜆 = 0

𝜎 = 2

𝑝3
𝑝4

𝑄 = 5, 𝑝5 , 6, 𝑝6 , 7, 𝑝7

𝑝5
𝑝6

𝑝7

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx. 

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

𝑝1
𝑝2

𝜆 = 0

𝜎 = 2

𝑝3
𝑝4

𝑝5

𝑄 = 5, 𝑝5 , 6, 𝑝6 , 7, 𝑝7

𝑝6
𝑝7

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖

𝑝1
𝑝2

𝜆 = 0

𝜎 = 2

𝑝3
𝑝4

𝑄 = 5, 𝑝5 , 6, 𝑝6 , 7, 𝑝7 , 8, 𝑝8

𝑝5
𝑝6

𝑝7

𝑝8

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx. 

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

𝑝1
𝑝2

𝜆 = 3

𝜎 = 2

𝑝3
𝑝4

𝑝5
𝑝6

𝑝7

𝑄 = 5, 𝑝5 , 6, 𝑝6 , 7, 𝑝7 , 8, 𝑝8

𝑝8

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx. 

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

𝑝1
𝑝2

𝜆 = 3

𝜎 = 2

𝑝3
𝑝4

𝑝5
𝑝6

𝑝7

𝑄 = 5, 𝑝5 , 6, 𝑝6 , 7, 𝑝7 , 8, 𝑝8

𝑝8

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx. 

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

- 𝐶 = 1,
𝜖

4
-coreset 

for 𝑇.

𝑝1
𝑝2

𝜆 = 3

𝜎 = 2

𝑝3
𝑝4

𝑝5
𝑝6

𝑝7

𝑄 = 5, 𝑝5 , 6, 𝑝6 , 7, 𝑝7 , 8, 𝑝8

𝑝8

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx. 

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

- 𝐶 = 1,
𝜖

4
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for 𝑇.
- 𝑔 = a linear approx. 

of 𝑇 +save endpoints.𝑝1
𝑝2

𝜆 = 3

𝜎 = 2

𝑝3
𝑝4

𝑝5
𝑝6

𝑝7

𝑄 = 5, 𝑝5 , 6, 𝑝6 , 7, 𝑝7 , 8, 𝑝8

𝑝8

𝑏 = 5 𝑒 = 7

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx. 

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

- 𝐶 = 1,
𝜖

4
-coreset 

for 𝑇.
- 𝑔 = a linear approx. 

of 𝑇 +save endpoints.
- 𝐷 = 𝐷 ∪ 𝐶, 𝑔, 𝑏, 𝑒 .

𝑝1
𝑝2

𝜆 = 3

𝜎 = 2

𝑝3
𝑝4

𝑝5
𝑝6

𝑝7

𝑄 = 5, 𝑝5 , 6, 𝑝6 , 7, 𝑝7 , 8, 𝑝8

𝑝8

𝑏 = 5 𝑒 = 7

𝐷 = { 𝑝1, 𝑝4 , 𝑔1, 1,4 ,
𝑝6, 𝑝7 , 𝑔2, 5,7 }



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx. 

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

- 𝐶 = 1,
𝜖

4
-coreset 

for 𝑇.
- 𝑔 = a linear approx. 

of 𝑇 +save endpoints.
- 𝐷 = 𝐷 ∪ 𝐶, 𝑔, 𝑏, 𝑒 .

- 𝑄 = 𝑖, 𝑝𝑖 .

𝑝1
𝑝2

𝜆 = 3

𝜎 = 2

𝑝3
𝑝4

𝑝5
𝑝6

𝑝7

𝑄 = 8, 𝑝8

𝑝8

𝑏 𝑒

𝐷 = { 𝑝1, 𝑝4 , 𝑔1, 1,4 ,
𝑝6, 𝑝7 , 𝑔2, 5,7 }



K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖

𝑝1
𝑝2

𝜆 = 3

𝜎 = 2

𝑝3
𝑝4

𝑝5
𝑝6

𝑝7

𝑄 = 8, 𝑝8 , 9, 𝑝9

𝑝8

𝑝9

⋮
𝐷 = { 𝑝1, 𝑝4 , 𝑔1, 1,4 ,

𝑝6, 𝑝7 , 𝑔2, 5,7 }
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We now prove that the output 
𝐷 of our algorithm is a
𝑘, 𝜀 -coreset for 𝑃.
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Running time:

In a few slides we will show an algorithm to compute a (1, 𝜀)-coreset 𝐶 in time 𝑂
𝑛𝑑

𝜀4
for 𝑛 points. This 

algorithm is dynamic and supports insertions of a new point in 𝑂
𝑑

𝜀4
time. Therefore, updating the 1-

segment mean 𝑓∗ and the coreset 𝐶 can be done in 𝑂
𝑑

𝜀4
time per point, and the overall time is 𝑂

𝑛𝑑

𝜀4

time.
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Claim 15: Accurate (1,0)-coreset

Let 𝑃 ⊆ ℝ𝑑+1 be a signal, 𝑘 ≥ 1. Let 𝐶,𝑤 be an output of a call to 1-𝑆𝐸𝐺𝑀𝐸𝑁𝐶𝑂𝑅𝐸𝑆𝐸𝑇(𝑃).
Then 𝐶,𝑤 is a 1,0 -coreset for 𝑃 of size 𝐶 = 𝑑 + 1. Formally, for every 1-segment 𝑓 we 
have

𝑐𝑜𝑠𝑡 𝑃, 𝑓 = 𝑤 ⋅ 𝑐𝑜𝑠𝑡 𝐶, 𝑓 .

Moreover, 𝐶 and 𝑤 can be computed in 𝑂 𝑛𝑑2 time.

The size and running time of the above 1,0 -coreset 𝐶 might be too large. Therefore, we 

then show how to construct a 1, 𝜀 -coreset of size O
1

𝜀2
that takes 𝑂

𝑛𝑑

𝜀4
time.
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Proof:

Let 𝑓 be a 1-segment. Hence, there are row vectors 𝑎, 𝑏 ∈ ℝ𝑑 such that 𝑓 𝑡 = 𝑎 + 𝑏 ⋅ 𝑡 for 

every 𝑡 ∈ ℝ. Bu definition of 𝑄 and 𝑌 we have that 
𝑌𝑄𝑇𝑢

𝑢
=

𝑤,…, 𝑤
𝑇

𝑢
. The leftmost column of 

𝑌𝑄𝑇Σ𝑉𝑇 is thus 𝑌𝑄𝑇𝑢 = 𝑤,… , 𝑤 𝑇.

Therefore,

𝑐𝑜𝑠𝑡 𝑃, 𝑓 = ෍

𝑡,𝑝 ∈𝑃

𝑛

𝑓 𝑡 − 𝑝 2 = ෍

(𝑡,𝑝)∈𝑃

𝑎 + 𝑏 ⋅ 𝑡 − 𝑝 2

=
1 𝑡1 𝑝1

⋮
1 𝑡𝑛 𝑝𝑛

𝑎
𝑏
−𝐼

2

= 𝑈Σ𝑉𝑇
𝑎
𝑏
−𝐼

2

= 𝑌𝑄𝑇Σ𝑉𝑇
𝑎
𝑏
−𝐼

2

=
𝑤
⋮
𝑤

𝑤𝐵
𝑎
𝑏
−𝐼

2

𝑤
1
⋮
1

𝐵
𝑎
𝑏
−𝐼

2

= 𝑤 ⋅ ෍

𝑡,𝑝 ∈𝐵

𝑎 + 𝑏 ⋅ 𝑡 − 𝑝 2 = 𝑤 ⋅ 𝑐𝑜𝑠𝑡 𝐶, 𝑓 .
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Theorem: (1, 𝜀)-coreset

Let 𝑃 ⊆ ℝ𝑑+1 and let 𝜀 > 0.

A 1, 𝜀 -coreset 𝐶 ⊆ ℝ𝑑+1 for 𝑃 of size 𝐶 = 𝑂
1

𝜀2
can be computed in 𝑂

𝑛𝑑

𝜀4
time. 

Smaller coreset with less 
computation time.
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Corollary:

Let 𝜀 ∈ 0,1 . A (1 + 𝜀)-approximation to the 1-segment mean of 𝑃 can be computed in 𝑂
𝑛𝑑

𝜀4
time.

Proof:

Based on the previous Theorem, we can compute a 1, 𝜀 -coreset 𝐶 of size 𝐶 = 𝑂
1

𝜀2
in 𝑂

𝑛𝑑

𝜀4
time. 

Then, using the singular value decomposition (solving linear regression), it is easy to compute a 1-
segment mean 𝑓 of 𝐶 in 𝑂 𝑑 ⋅ 𝐶 2 = 𝑂

𝑑

𝜀4
time. Let 𝑓∗ be a 1-segment mean of 𝑃 and 𝑓 be a 1-

segment mean of 𝐶. Then

𝑐𝑜𝑠𝑡 𝑃, 𝑓 ≤ 1 + 𝜀 𝑐𝑜𝑠𝑡 𝐶, 𝑓 ≤ 1 + 𝜀 𝑐𝑜𝑠𝑡 𝐶, 𝑓∗ ≤ 1 + 𝜀 2𝑐𝑜𝑠𝑡 𝑃, 𝑓∗ ≤ 1 + 3𝜀 𝑐𝑜𝑠𝑡 𝑃, 𝑓∗ .

Replacing 𝜀 with 
𝜀

3
in the above proof proves the corollary.


