Big Data Class

LECTURER: DAN FELDMAN

TEACHING ASSISTANTS:

IBRAHIM JUBRAN

ALAA MAALOUF

Restaurants you visited on July 11th, 2012

1. Anna's Taqueria

You were here on July 11th from 7:03 PM to 7:31 PM, with John Smith, Foo Bar, and <u>3 OTHERS</u>.

You have been here 142 OTHER TIMES.

VIEW SIMILAR RESTAURANTS

2. Toscanini's Ice Cream

You were here on July 11th from 7:44 PM to 7:58 PM, with Tim Yang, John Smith, and 4 OTHERS.

You have been here 17 OTHER TIMES.

VIEW SIMILAR RESTAURANTS

Search my history

Get suggestions

longitude Latitude

Big Data—Big Noise

GPS Compression

[Feldman, Wu, Julian, Sung & Rus.]

- Quadrobot collects data using attached smartphone
- Terabytes
 - = 4 hours of image snapshots from Quadrobot
- Challenge: Real-time compression

k-Segment mean

The k-segment f^* that minimizes the fitting cost from points to a d-dimensional signal

k – Segment Queries

Input: d-dimensional signal P over time

k – Segment Queries

Input: *d*-dimensional signal *P* over time Query: *k* segments over time

k-Piecewise linear function *f* over *t*

k – Segment Queries

Input: d-dimensional signal P over time

Query: k segments over time

Output: Sum of squared distances from P

Coreset

A weighted set *C* such that for every *k*-segment *f*:

 $cost(P, f) \sim cost_w(C, f)$

Different cost function

$$\sum_{t} \|f(t) - p_t\|^2 (1 \pm \epsilon)$$

$$\sum_{p_t \in C} w(p_t) \cdot \|f(t) - p_t\|^2$$

No small coreset $C \subset P$ exists for k-segment queries

Coreset C: all points except one

Coreset C: all points except one

Query f: covers all except this one

Coreset C: all points except one

Query f: covers all except this one

$$Cost(C, f) = 0$$

Coreset C: all points except one

Query f: covers all except this one

$$\frac{\operatorname{Cost}(P, f) > 0}{\operatorname{Cost}(C, f) = 0}$$

Unbounded factor approximation

For every point *p*:

Sensitivity(p) =
$$\max_{q \in Q} \frac{dist(p,q)}{\sum_{p'} dist(p',q)} = 1$$

Total sensitivities: *n*

Definition: Coreset

A weighted set $C \nearrow P$ such that for every k-segment f:

$$cost(P, f) \sim cost_w(C, f)$$

$$\sum_{t} \|f(t) - pt\|$$

$$\sum_{p_t \in C} w(p_t) \cdot ||f(t) - pt||$$

Points on a segment can be stored by the two indexes of their end-points

Points on a segment can be stored by the two indexes of their end-points and the slope of the segment

Points on a segment can be stored by the two indexes of their end-points and the slope of the segment

We can solve optimally for k=1 (1 segment) by solving a simple linear regression problem on the set of points.

Coreset for k-segment Mean

Definition: (k, ε) -coreset

Let $P \subseteq \mathbb{R}^{d+1}$ be a signal, $k \ge 1$ and $\varepsilon > 0$.

Let D be a set of items, and $cost'(D,\cdot)$ be a function that maps every k-segment f to a non-negative number. Then (D, cost') is a (k, ϵ) -coreset for P if for every k-segment f we have

 $(1 - \varepsilon)cost(P, f) \le cost'(D, f) \le (1 + \varepsilon)cost(P, f).$

Coreset for k-segment Mean

Definition: cost'(D, f)

See main algorithm to understand D better

Let $D=\{(C_i,g_i,b_i,e_i)\}_{i=1}^m$ where for every $i\in[m]$ we have $C_i\subseteq\mathbb{R}^{d+1}$, $g_i\colon\mathbb{R}\to\mathbb{R}^d$ and $b_i,e_i\in\mathbb{R}$ such that $b_i\le e_i$. For a k-segment $f\colon\mathbb{R}\to\mathbb{R}^d$ and $i\in[m]$ we say that C_i is served by one segment of f if $\{f(t)|b_i\le t\le e_i\}$ is a linear segment. We denote by $Good(D,f)\subseteq[m]$ the union of indices i such that C_i is served by one segment of f. We also define $L_i=\{g_i(t)|b_i\le t\le e_i\}$, the projection of C_i on G_i . We define C_i as

$$\sum_{i \in Good(D,f)} cost(C_i,f) + \sum_{i \in [m] \setminus Good(D,f)} cost(L_i,f).$$

Our Main Compression Theorem

[ACM GIS'12, with C. Sung, and D. Rus]

Theorem:

For every discrete signal P of n points in R^d , there is a (k, ε) -coreset for P of

space $O\left(\frac{k\log n}{\epsilon^2}\right)$ that can be computed in the big data model, and can be

computed in $O\left(\frac{dn}{\epsilon^4}\right)$ time.

See Algorithm BALANCEDPARTITION.

K – segments Bicriteria

Algorithm 1: BICRITERIA(P, k)

```
Input: A set P \subseteq \mathbb{R}^{d+1} and an integer k \ge 1
  Output: An (O(\log n), O(\log n))-approximation to the k-segment mean of P.
1 if n < 2k + 1 then
       f := a 1-segment mean of P;
     return f;
4 Set t_1 \leq \cdots \leq t_n and p_1, \cdots, p_n \in \mathbb{R}^d such that P = \{(t_1, p_1), \cdots, (t_n, p_n)\}
m \leftarrow \{t \in \mathbb{R} \mid (t, p) \in P\}
6 Partition P into 4k sets P_1, \dots, P_{2k} \subseteq P such that for every i \in [2k-1]:
     (i) |\{t \mid (t,p) \in P_i\}| = \left|\frac{m}{4k}\right|, and (ii) if (t,p) \in P_i and (t',p') \in P_{i+1} then t < t'.
```

- **8 for** i := 1 to 4k do
- Compute a 2-approximation g_i to the 1-segment mean of P_i
- 10 Q := the union of k+1 signals P_i with the smallest value $cost(P_i, g_i)$ among $i \in [2k]$.
- 11 $h := BICRITERIA(P \setminus Q, k)$; Repartition the segments that did not have a good approximation
- 12 Set

$$f(t) := \begin{cases} g_i(t) & \exists (t,p) \in P_i \text{ such that } P_i \subseteq Q \\ h(t) & \text{otherwise} \end{cases}.$$

13 return f;

Input:

A signal $P \subseteq \mathbb{R}^d$, and an integer k.

Output:

An (α, β) -approximation f' to the k-segment mean of P.

$$\alpha, \beta = O(\log n)$$

 $\sigma = cost(P, f')$ where f' is the output of the Bicriteria algorithm

Algorithm 2: BALANCEDPARTITION (P, ε, σ)

```
Input: A set P = \{(1, p_1), \dots, (n, p_n)\} in \mathbb{R}^{d+1}
   an error parameters \varepsilon \in (0, 1/10) and \sigma > 0.
   Output: A set D that satisfies Theorem 4.
 1 Q := \emptyset; D = \emptyset; p_{n+1} := an arbitrary point in \mathbb{R}^d;
 2 for i := 1 to n + 1 do
       Q := Q \cup \{(i, p_i)\}; Add new point to tuple
       f^* := a \text{ linear approximation of } Q; \quad \lambda := \cot(Q, f^*)
       if \lambda > \sigma or i = n + 1 then
            T := Q \setminus \{(i, p_i)\}; take all the new points into tuple
            C := a(1, \varepsilon/4)-coreset for T; Approximate points by a local
            representation
            g := a linear approximation of T, b := i - |T|, e := i - 1; save
            endpoints
            D := D \cup \{(C, g, b, e)\}; save a tuple
            Q := \{(i, p_i)\}; proceed to new point
10
11 return D
```

We will show how to compute a $(1, \varepsilon)$ -coreset later

```
\sigma = 2
Q = \{(1, p_1)\}
```


For $i := 1 \rightarrow n$ do - $Q = Q \cup \{(i, p_i)\}$

```
\sigma = 2 Q = \{(1, p_1), (2, p_2)\}
```


For $i := 1 \rightarrow n$ do - $Q = Q \cup \{(i, p_i)\}$

```
\sigma = 2
Q = \{(1, p_1), (2, p_2)\}
\lambda = 0
```

For $i := 1 \rightarrow n$ do

- $Q = Q \cup \{(i, p_i)\}$
- $f^* =$ a linear approx. of Q.
- $\lambda = cost(Q, f^*)$

```
\sigma = 2
Q = \{(1, p_1), (2, p_2), (3, p_3)\}
\lambda = 0
```

For $i := 1 \rightarrow n$ do - $Q = Q \cup \{(i, p_i)\}$

```
\sigma = 2
Q = \{(1, p_1), (2, p_2), (3, p_3)\}
\lambda = 1
```

For $i := 1 \rightarrow n$ do

- $Q = Q \cup \{(i, p_i)\}$
- $f^* = a$ linear approx. of Q.
- $\lambda = cost(Q, f^*)$

```
\sigma = 2
Q = \{(1, p_1), (2, p_2), (3, p_3), (4, p_4)\}
\lambda = 1
```

For
$$i := 1 \rightarrow n$$
 do
- $Q = Q \cup \{(i, p_i)\}$

```
\sigma = 2
Q = \{(1, p_1), (2, p_2), (3, p_3), (4, p_4)\}
\lambda = 1
```

For $i := 1 \rightarrow n$ do

- $Q = Q \cup \{(i, p_i)\}$
- $f^* = a$ linear approx. of Q.
- $\lambda = cost(Q, f^*)$

```
\sigma = 2
Q = \{(1, p_1), (2, p_2), (3, p_3), (4, p_4), (5, p_5)\}
\lambda = 1
                        p_5
```

For
$$i \coloneqq 1 \to n$$
 do $Q = Q \cup \{(i, p_i)\}$

```
\sigma = 2
Q = \{(1, p_1), (2, p_2), (3, p_3), (4, p_4), (5, p_5)\}
\lambda = 5
                         p_5
```

For $i := 1 \rightarrow n$ do

- $Q = Q \cup \{(i, p_i)\}$
- $f^* =$ a linear approx. of Q.
- $\lambda = cost(Q, f^*)$

```
\sigma = 2
Q = \{(1, p_1), (2, p_2), (3, p_3), (4, p_4), (5, p_5)\}
\lambda = 5
```

```
For i := 1 \rightarrow n do
 Q = Q \cup \{(i, p_i)\}
 f^* = a linear approx.
- \lambda = cost(Q, f^*)
 if \lambda > \sigma
   -T = Q \setminus \{(i, p_i)\}\
```

```
\sigma = 2
Q = \{(1, p_1), (2, p_2), (3, p_3), (4, p_4), (5, p_5)\}
\lambda = 5
```

```
For i := 1 \rightarrow n do
- Q = Q \cup \{(i, p_i)\}
  f^* = a linear approx.
- \lambda = cost(Q, f^*)
 if \lambda > \sigma
   -T = Q \setminus \{(i, p_i)\}\
   -C = \left(1, \frac{\epsilon}{4}\right)-coreset
```

for T.

```
\sigma = 2
 Q = \{(1, p_1), (2, p_2), (3, p_3), (4, p_4), (5, p_5)\}
\lambda = 5
                          p_{5}
b
```

```
For i := 1 \rightarrow n do
 Q = Q \cup \{(i, p_i)\}
 f^* = a linear approx.
- \lambda = cost(Q, f^*)
 if \lambda > \sigma
   -T = Q \setminus \{(i, p_i)\}\
   -C = \left(1, \frac{\epsilon}{4}\right)-coreset
    for T.
   -g = a linear approx.
    of T +save endpoints.
```

```
\sigma = 2
 Q = \{(1, p_1), (2, p_2), (3, p_3), (4, p_4), (5, p_5)\}
\lambda = 5
                                  D = \{(\{p_1, p_4\}, g_1, 1, 4)\}
                       p_5
h=1
                 e=4
```

```
For i := 1 \rightarrow n do
  Q = Q \cup \{(i, p_i)\}
  f^* = a linear approx.
    of Q.
  \lambda = cost(Q, f^*)
 if \lambda > \sigma
   -T = Q \setminus \{(i, p_i)\}
   -C = \left(1, \frac{\epsilon}{4}\right)-coreset
    for T.
   -g = a linear approx.
    of T +save endpoints.
```

 $-D = D \cup \{(C, g, b, e)\}.$

```
\sigma = 2
 Q = \{(5, p_5)\}
\lambda = 5
                                  D = \{(\{p_1, p_4\}, g_1, 1, 4)\}
                      p_{5}
h=1
                 e=4
```

```
For i := 1 \rightarrow n do
  Q = Q \cup \{(i, p_i)\}
  f^* = a linear approx.
    of Q.
 \lambda = cost(Q, f^*)
 if \lambda > \sigma
   -T = Q \setminus \{(i, p_i)\}
  -C = \left(1, \frac{\epsilon}{4}\right)-coreset
    for T.
   -g = a linear approx.
    of T +save endpoints.
   -D = D \cup \{(C, g, b, e)\}.
   -Q = \{(i, p_i)\}.
```

$$\sigma = 2$$

$$Q = \{(5, p_5), (6, p_6)\}$$

$$\lambda = 5$$

$$D = \{(\{p_1, p_4\}, g_1, 1, 4)\}$$

For
$$i \coloneqq 1 \to n$$
 do $Q = Q \cup \{(i, p_i)\}$

```
\sigma = 2
Q = \{(5, p_5), (6, p_6)\}
\lambda = 0
                                    D = \{(\{p_1, p_4\}, g_1, 1, 4)\}
```

For $i := 1 \rightarrow n$ do

- $Q = Q \cup \{(i, p_i)\}$
- $f^* =$ a linear approx. of Q.
- $\lambda = cost(Q, f^*)$

```
\sigma = 2
Q = \{(5, p_5), (6, p_6), (7, p_7)\}
\lambda = 0
                                   D = \{(\{p_1, p_4\}, g_1, 1, 4)\}
```

For
$$i := 1 \rightarrow n$$
 do $Q = Q \cup \{(i, p_i)\}$

```
\sigma = 2
Q = \{(5, p_5), (6, p_6), (7, p_7)\}
\lambda = 0
                                    D = \{(\{p_1, p_4\}, g_1, 1, 4)\}
```

For $i := 1 \rightarrow n$ do

- $Q = Q \cup \{(i, p_i)\}$
- $f^* = a$ linear approx. of Q.
- $\lambda = cost(Q, f^*)$

```
\sigma = 2
Q = \{(5, p_5), (6, p_6), (7, p_7), (8, p_8)\}
\lambda = 0
                                   D = \{(\{p_1, p_4\}, g_1, 1, 4)\}
```

For $i := 1 \rightarrow n$ do - $Q = Q \cup \{(i, p_i)\}$

```
\sigma = 2
Q = \{(5, p_5), (6, p_6), (7, p_7), (8, p_8)\}
\lambda = 3
                                    D = \{(\{p_1, p_4\}, g_1, 1, 4)\}
```

For $i := 1 \rightarrow n$ do

- $Q = Q \cup \{(i, p_i)\}$
- $f^* = a$ linear approx. of Q.
- $\lambda = cost(Q, f^*)$

```
\sigma = 2
Q = \{(5, p_5), (6, p_6), (7, p_7), (8, p_8)\}
\lambda = 3
                                    D = \{(\{p_1, p_4\}, g_1, 1, 4)\}
```

For $i \coloneqq 1 \to n$ do $Q = Q \cup \{(i, p_i)\}$

- $f^* =$ a linear approx. of Q.
- $\lambda = cost(Q, f^*)$ if $\lambda > \sigma$ - $T = Q \setminus \{(i, p_i)\}$

```
\sigma = 2
Q = \{(5, p_5), (6, p_6), (7, p_7), (8, p_8)\}
\lambda = 3
                                   D = \{(\{p_1, p_4\}, g_1, 1, 4)\}
```

```
For i := 1 \rightarrow n do
  Q = Q \cup \{(i, p_i)\}
  f^* = a linear approx.
  \lambda = cost(Q, f^*)
  if \lambda > \sigma
   -T = Q \setminus \{(i, p_i)\}\
   -C = \left(1, \frac{\epsilon}{4}\right)-coreset
```

for T.

```
\sigma = 2
Q = \{(5, p_5), (6, p_6), (7, p_7), (8, p_8)\}
\lambda = 3
                                  D = \{(\{p_1, p_4\}, g_1, 1, 4)\}
                                  e = 7
                       b = 5
```

For $i := 1 \rightarrow n$ do $Q = Q \cup \{(i, p_i)\}$ $f^* = a linear approx.$ $\lambda = cost(Q, f^*)$ if $\lambda > \sigma$ $-T = Q \setminus \{(i, p_i)\}$ $-C = \left(1, \frac{\epsilon}{4}\right)$ -coreset for T.

- g = a linear approx. of T +save endpoints.

```
\sigma = 2
Q = \{(5, p_5), (6, p_6), (7, p_7), (8, p_8)\}
\lambda = 3
                                D = \{(\{p_1, p_4\}, g_1, 1, 4),
                                           \{p_6, p_7\}, g_2, 5, 7\}
                                 e = 7
                      b=5
```

```
For i := 1 \rightarrow n do
  Q = Q \cup \{(i, p_i)\}
  f^* = a linear approx.
    of Q.
  \lambda = cost(Q, f^*)
  if \lambda > \sigma
   -T = Q \setminus \{(i, p_i)\}
   -C = \left(1, \frac{\epsilon}{4}\right)-coreset
    for T.
   -g = a linear approx.
    of T +save endpoints.
   -D = D \cup \{(C, g, b, e)\}.
```

```
\sigma = 2
Q = \{(8, p_8)\}
\lambda = 3
                                 D = \{(\{p_1, p_4\}, g_1, 1, 4),
                                            \{p_6, p_7\}, g_2, 5, 7\}
```

```
For i := 1 \rightarrow n do
  Q = Q \cup \{(i, p_i)\}
  f^* = a linear approx.
    of Q.
  \lambda = cost(Q, f^*)
  if \lambda > \sigma
   -T = Q \setminus \{(i, p_i)\}
  -C = \left(1, \frac{\epsilon}{4}\right)-coreset
    for T.
   -g = a linear approx.
    of T +save endpoints.
   -D = D \cup \{(C, g, b, e)\}.
   -Q = \{(i, p_i)\}.
```

```
\sigma = 2
Q = \{(8, p_8), (9, p_9)\}
\lambda = 3
                                  D = \{(\{p_1, p_4\}, g_1, 1, 4),
                                             (\{p_6, p_7\}, g_2, 5, 7)\}
```

For $i \coloneqq 1 \to n$ do $Q = Q \cup \{(i, p_i)\}$

•

Algorithm 2: BALANCEDPARTITION (P, ε, σ)

```
Input: A set P = \{(1, p_1), \dots, (n, p_n)\} in \mathbb{R}^{d+1}
   an error parameters \varepsilon \in (0, 1/10) and \sigma > 0.
   Output: A set D that satisfies Theorem 4.
 1 Q := \emptyset; D = \emptyset; p_{n+1} := an arbitrary point in \mathbb{R}^d;
 2 for i := 1 to n + 1 do
       Q := Q \cup \{(i, p_i)\}; Add new point to tuple
       f^* := a \text{ linear approximation of } Q; \quad \lambda := \cot(Q, f^*)
       if \lambda > \sigma or i = n + 1 then
            T := Q \setminus \{(i, p_i)\}; take all the new points into tuple
            C := a(1, \varepsilon/4)-coreset for T; Approximate points by a local
            representation
            g := a linear approximation of T, b := i - |T|, e := i - 1; save
            endpoints
            D := D \cup \{(C, g, b, e)\}; save a tuple
           Q := \{(i, p_i)\}; proceed to new point
10
```

We now prove that the output D of our algorithm is a (k, ε) -coreset for P.

11 return D

K – segments Algorithm (Proof)

Proof Let m = |D| and f be a k-segment. We denote the ith coreset segment in D by (C_i, g_i, b_i, e_i) for every $i \in [m]$. For every $i \in [m]$ we have that C_i is a $(1, \varepsilon/4)$ -coreset for a corresponding subset $T = T_i$ of P. By the construction of D we also have $P = T_1 \cup \cdots \cup T_m$.

Using Definition 3 of cost'(D, f), Good(D, f) and L_i , we thus have

$$|\operatorname{cost}(P, f) - \operatorname{cost}'(D, f)|$$

$$= |\sum_{i=1}^{m} \operatorname{cost}(T_{i}, f) - \left(\sum_{i \in \operatorname{Good}(D, f)} \operatorname{cost}(C_{i}, f) + \sum_{i \in [m] \setminus \operatorname{Good}(D, f)} \operatorname{cost}(L_{i}, f)\right)|$$

$$= |\sum_{i \in \operatorname{Good}(D, f)} (\operatorname{cost}(T_{i}, f) - \operatorname{cost}(C_{i}, f)) + \sum_{i \in [m] \setminus \operatorname{Good}(D, f)} (\operatorname{cost}(T_{i}, f) - \operatorname{cost}(L_{i}, f))$$

$$\leq \sum_{i \in \operatorname{Good}(D, f)} |\operatorname{cost}(T_{i}, f) - \operatorname{cost}(C_{i}, f)| + \sum_{i \in [m] \setminus \operatorname{Good}(D, f)} |\operatorname{cost}(T_{i}, f) - \operatorname{cost}(L_{i}, f)|,$$

$$\leq \sum_{i \in \operatorname{Good}(D, f)} |\operatorname{cost}(T_{i}, f) - \operatorname{cost}(C_{i}, f)| + \sum_{i \in [m] \setminus \operatorname{Good}(D, f)} |\operatorname{cost}(T_{i}, f) - \operatorname{cost}(L_{i}, f)|,$$

$$\leq \sum_{i \in \operatorname{Good}(D, f)} |\operatorname{cost}(T_{i}, f) - \operatorname{cost}(C_{i}, f)| + \sum_{i \in [m] \setminus \operatorname{Good}(D, f)} |\operatorname{cost}(T_{i}, f) - \operatorname{cost}(L_{i}, f)|,$$

where the last inequality is due to the triangle inequality. We now bound each term in the right hand side.

For every $i \in \text{Good}(D, f)$ we have that C_i is a $(1, \varepsilon/4)$ -coreset for T_i , so

$$|\cot(T_i, f) - \cot(C_i, f)| \le \frac{\varepsilon \cot(T_i, f)}{4}.$$
 (3)

For every $i \in [m] \setminus \text{Good}(D, f)$, we have

$$|\cos t(T_{i}, f) - \cos t(L_{i}, f)| = \left| \sum_{(p,t) \in T_{i}} ||p - f(t)||^{2} - \sum_{t=b_{i}}^{e_{i}} ||g_{i}(t) - f(t)||^{2} \right|$$

$$= \left| \sum_{(p,t) \in T_{i}} (||p - f(t)||^{2} - ||g_{i}(t) - f(t)||^{2}) \right|$$

$$\leq \sum_{(p,t) \in T_{i}} |||p - f(t)||^{2} - ||g_{i}(t) - f(t)||^{2} |$$

$$\leq \sum_{(p,t) \in T_{i}} \left(\frac{12||g_{i}(t) - p||^{2}}{\varepsilon} + \frac{\varepsilon||p - f(t)||^{2}}{2} \right)$$

$$= \frac{12 \cot(T_{i}, g_{i})}{\varepsilon} + \frac{\varepsilon \cot(T_{i}, f)}{2} \leq \frac{24\sigma}{\varepsilon} + \frac{\varepsilon \cot(T_{i}, f)}{2},$$
(6)

where (5) is by the triangle inequality, and (6) is by the weak triangle inequality (see (Feldman et al., 2013, Lemma 7.1)). The inequality in (7) is because by construction $cost(T, f^*) \le \sigma$ for some 2-approximation f^* of the 1-segment mean of T. Hence, $cost(T, g_i) \le 2cost(T, f^*) \le 2\sigma$.

Plugging (7) and (3) in (2) yields

$$|\operatorname{cost}(P, f) - \operatorname{cost}'(D, f)| \leq \sum_{i \in \operatorname{Good}(D, f)} \frac{\varepsilon \operatorname{cost}(T_i, f)}{4} + \sum_{i \in [m] \setminus \operatorname{Good}(D, f)} \left(\frac{24\sigma}{\varepsilon} + \frac{\varepsilon}{2} \operatorname{cost}(T_i, f) \right)$$
$$\leq \left(\frac{\varepsilon}{4} + \frac{\varepsilon}{2} \right) \operatorname{cost}(P, f) + \frac{24k\sigma}{\varepsilon},$$

where in the last inequality we used that fact that $|[m] \setminus \text{Good}(D, f)| \le k - 1 < k$ since f is a k-segment. Substituting σ yields

$$\begin{aligned} |\mathrm{cost}(P,f) - \mathrm{cost}'(D,f)| &\leq \frac{3\varepsilon}{4} \mathrm{cost}(P,f) + \frac{\varepsilon \mathrm{cost}(P,h)}{4\alpha} \\ &\leq \frac{3\varepsilon}{4} \mathrm{cost}(P,f) + \frac{\varepsilon \mathrm{cost}(P,f)}{4} = \varepsilon \mathrm{cost}(P,f). \end{aligned}$$

Bound on |D|: Let $i \in [m-1]$, consider the values of T, Q and λ during the execution of Line \overline{T} when $T = T_i$ is constructed. Let $Q_i = Q$ and $\lambda_i = \lambda$. The cost of the 1-segment mean of Q_i is at least $\lambda_i/2 > \sigma/2 > 0$, which implies that $|Q_i| \ge 3$ and thus $|T_i| \ge 1$. Since Q_{i-1} is the union of T_{i-1} with the first point of T_i we have $Q_{j-1} \subseteq T_{i-1} \cup T_j$. By letting g^* denote a 1-segment mean of $T_{i-1} \cup T_i$ we have

$$cost(T_{i-1} \cup T_i, g^*) \ge cost(Q_{i-1}, g^*) \ge \lambda_i/2 > \sigma/2.$$

Bound on |D|: Let $i \in [m-1]$, consider the values of T, Q and λ during the execution of Line \overline{T} when $T = T_i$ is constructed. Let $Q_i = Q$ and $\lambda_i = \lambda$. The cost of the 1-segment mean of Q_i is at least $\lambda_i/2 > \sigma/2 > 0$, which implies that $|Q_i| \ge 3$ and thus $|T_i| \ge 1$. Since Q_{i-1} is the union of T_{i-1} with the first point of T_i we have $Q_{j-1} \subseteq T_{i-1} \cup T_j$. By letting g^* denote a 1-segment mean of $T_{i-1} \cup T_i$ we have

$$cost(T_{i-1} \cup T_i, g^*) \ge cost(Q_{i-1}, g^*) \ge \lambda_i/2 > \sigma/2.$$

Suppose that for our choice of $i \in [m-1]$, the points in $T_{i-1} \cup T_j$ are served by a single segment of h, i.e, $\{h(t) \mid b_{i-1} \le t \le e_i\}$ is a linear segment. Then

$$cost(T_{i-1}, h) + cost(T_i, h) = cost(T_{i-1} \cup T_i, h) \ge cost(T_{i-1} \cup T_i, g^*) > \sigma/2.$$
 (8)

Let $G \subseteq [m-1]$ denote the union over all values $i \in [m-1]$ such that i is both even and satisfies (8). Summing (8) over G yields

$$cost(P,h) = \sum_{i \in [m]} cost(T_i,h) \ge \sum_{i \in G} (cost(T_{i-1},h) + cost(T_i,h)) \ge |G|\sigma/2.$$
 (9)

Since h is a (βk) -segment, at most $(\beta k)-1$ sets among T_1, \dots, T_m are not served by a single segment of h, so $|G| \ge (m-\beta k)/2$. Plugging this in (9) yields $\cot(P, h) \ge (m-\beta k)\sigma/4$. Rearranging,

$$m \le \frac{4\mathrm{cost}(P,h)}{\sigma} + \beta k = O\left(\frac{k\alpha}{\varepsilon^2}\right) + \beta k.$$
 (10)

Running time:

In a few slides we will show an algorithm to compute a $(1,\varepsilon)$ -coreset C in time $O\left(\frac{nd}{\varepsilon^4}\right)$ for n points. This algorithm is dynamic and supports insertions of a new point in $O\left(\frac{d}{\varepsilon^4}\right)$ time. Therefore, updating the 1-segment mean f^* and the coreset C can be done in $O\left(\frac{d}{\varepsilon^4}\right)$ time per point, and the overall time is $O\left(\frac{nd}{\varepsilon^4}\right)$ time.

Algorithm 7: 1-SegmentCoreset(P)

```
Input: A signal P = \{(t_1, p_1), \dots, (t_n, p_n)\} in \mathbb{R}^{d+1}.
```

Output: A (1,0)-coreset (C,w) that satisfies Claim 15.

- 1 Set $X \in \mathbb{R}^{n \times (d+2)}$ to be matrix whose ith row is $(1, t_i, p_i)$ for every $i \in [n]$.
- 2 Compute the thin SVD $X = U\Sigma V^T$ of X.
- 3 Set $u \in \mathbb{R}^{d+2}$ to be the leftmost column of ΣV^T .
- 4 Set $w := \frac{\|u\|^2}{d+2}$. /* w > 0 since $\|\Sigma\| = \|X\| > 0$
- 5 Set $Q, Y \in \mathbb{R}^{(d+2)\times(d+2)}$ to be unitary matrices whose leftmost columns are $u/\|u\|$ and $(\sqrt{w}, \cdots, \sqrt{w})/\|u\|$ respectively.

*/

- 6 Set $B \in \mathbb{R}^{(d+2)\times(d+1)}$ to be the (d+1) rightmost columns of $YQ^T\Sigma V^T/\sqrt{w}$.
- 7 Set $C \subseteq \mathbb{R}^{d+1}$ to be the union of the rows in B;
- 8 return (C, w)

Claim 15: Accurate (1,0)-coreset

Let $P \subseteq \mathbb{R}^{d+1}$ be a signal, $k \ge 1$. Let (C, w) be an output of a call to 1-SEGMENCORESET(P). Then (C, w) is a (1,0)-coreset for P of size |C| = d + 1. Formally, for every 1-segment f we have

$$cost(P, f) = w \cdot cost(C, f)$$
.

Moreover, C and w can be computed in $O(nd^2)$ time.

The size and running time of the above (1,0)-coreset C might be too large. Therefore, we then show how to construct a $(1,\varepsilon)$ -coreset of size $O\left(\frac{1}{\varepsilon^2}\right)$ that takes $O\left(\frac{nd}{\varepsilon^4}\right)$ time.

Proof:

Let f be a 1-segment. Hence, there are row vectors $a,b \in \mathbb{R}^d$ such that $f(t) = a + b \cdot t$ for every $t \in \mathbb{R}$. Bu definition of Q and Y we have that $\frac{YQ^Tu}{\|u\|} = \frac{\left(\sqrt{w},...,\sqrt{w}\right)^T}{\|u\|}$. The leftmost column of $YQ^T\Sigma V^T$ is thus $YQ^Tu = (\sqrt{w},...,\sqrt{w})^T$.

Therefore,

$$cost(P, f) = \sum_{(t,p)\in P}^{n} ||f(t) - p||^2 = \sum_{(t,p)\in P} ||a + b \cdot t - p||^2$$

$$= \left\| \begin{bmatrix} 1 & t_1 & p_1 \\ \vdots & \vdots & \\ 1 & t_n & p_n \end{bmatrix} \begin{bmatrix} a \\ b \\ -I \end{bmatrix} \right\|^2 = \left\| U \Sigma V^T \begin{bmatrix} a \\ b \\ -I \end{bmatrix} \right\|^2 = \left\| Y Q^T \Sigma V^T \begin{bmatrix} a \\ b \\ -I \end{bmatrix} \right\|^2 = \left\| \begin{bmatrix} \sqrt{w} \\ \vdots \\ \sqrt{w} \end{bmatrix} \nabla W B \right\| \begin{bmatrix} a \\ b \\ -I \end{bmatrix} \right\|^2$$

$$w \left\| \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} B \right\| \begin{bmatrix} a \\ b \\ -I \end{bmatrix} \right\|^2 = w \cdot \sum_{(t,p) \in B} \|a + b \cdot t - p\|^2 = w \cdot cost(C, f).$$

Smaller coreset with less computation time.

Theorem: $(1, \varepsilon)$ -coreset

Let $P \subseteq \mathbb{R}^{d+1}$ and let $\varepsilon > 0$.

A $(1, \varepsilon)$ -coreset $C \subseteq \mathbb{R}^{d+1}$ for P of size $|C| = O\left(\frac{1}{\varepsilon^2}\right)$ can be computed in $O\left(\frac{nd}{\varepsilon^4}\right)$ time.

Proof It was proven in Feldman et al. (2013) that a coreset for P and a family of query shapes, where each shape is spanned by O(1) vectors in \mathbb{R}^d , can be computed by projecting P on a $(1/\varepsilon^2)$ dimensional subspace S that minimizes the sum of squared distances to P up to a $(1+\varepsilon)$ factor. The resulting coreset approximates the sum of squared distances to every such shape up to a factor of $(1+\varepsilon)$. The size of this coreset is n, the same as the input size, however the coreset is contained in an $O(1/\varepsilon^2)$ dimensional subspace. We then compute a (1,0)-coreset C for this low dimensional set of n points in $s = O(1/\varepsilon^2)$ space using Algorithm 7, as per Claim 15. This will take additional $O(ns^2)$ time and the resulting coreset will be of size O(s).

The subspace S can be computed deterministically in $O(nd/\varepsilon^4)$ using a recent result of Ghashami and Phillips (2014)..

Corollary:

Let $\varepsilon \in (0,1)$. A $(1+\varepsilon)$ -approximation to the 1-segment mean of P can be computed in $O\left(\frac{nd}{\varepsilon^4}\right)$ time.

Proof:

Based on the previous Theorem, we can compute a $(1,\varepsilon)$ -coreset C of size $|C| = O\left(\frac{1}{\varepsilon^2}\right)$ in $O\left(\frac{nd}{\varepsilon^4}\right)$ time. Then, using the singular value decomposition (solving linear regression), it is easy to compute a 1-segment mean f of C in $O(d \cdot |C|^2) = O\left(\frac{d}{\varepsilon^4}\right)$ time. Let f^* be a 1-segment mean of C. Then

 $cost(P, f) \leq (1 + \varepsilon)cost(C, f) \leq (1 + \varepsilon)cost(C, f^*) \leq (1 + \varepsilon)^2 cost(P, f^*) \leq (1 + 3\varepsilon)cost(P, f^*).$

Replacing ε with $\frac{\varepsilon}{3}$ in the above proof proves the corollary.