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lDl&fy restaurants July 11

Restaurants you visited on July 11t, 2012

Welcome, Gary
Logout

[S&arch my histor}f] l Get suggestions ]

.l' -
1. Anna’s Taqueria
You were here on July 11* from 7:03 PM to 7:31 PM, with

John Smith, Foo Bar, and 3 oTHERs.
You have been here 142 oTHER TIMES.

VIEW SIMILAR RESTAURANTS

2. Toscanini’s Ice Cream

You were here on July 11% from 7:44 PM to 7:58 PM, with

Tim Yang, John Smith, and 4 oTHERs.
You have been here 17 oTHER TIMES.

VIEW SIMILAR RESTAURANTS
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Big Data— Big Noise
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GPS Compression
[Feldman, Wu, Julian, Sung & Rus.]

* Quadrobot collects data using attached smartphone
* Terabytes
= 4 hours of image snapshots from Quadrobot

* Challenge: Real-time compression




k-Segment mean

The k-segment f "that minimizes the fitting cost
from points to a d-dimensional signal
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k — Segment Queries

Input: d-dimensional signal P over time




k — Segment Queries

Input: d-dimensional signal P over time
Query: k segments over time
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k — Segment Queries

Input: d-dimensional signal P over time
Query: k segments over time
Output: Sum of squared distances from P
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cost(P, ):= Z 17 () = el




Coreset

A WEIghted set C SUCh that Different cost function
for every k-segment f :

cost(P, f) ~ cost, (C,f)
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Observation:
No small coreset C C P exists
for k-segment queries



Input P:

n points on the x-axis




Input P:

Coreset C:

n points on the x-axis

all points except one




Input P: n points on the x-axis

Coreset C:  all points except one

Query f: covers all except this one




Input P: n points on the x-axis
Coreset C:  all points except one
Query f: covers all except this one

Cost(P,f) >0
Cost(C,f) =0

Ips = TGl




Input P: n points on the x-axis

Coreset C:  all points except one

Query f: covers all except this one

Cost(P,f)>0 Unbounded factor

Cost(C,f)=0 - approximation

i e =T




For every point p:

L dist(p,q)
Sensitivit = max —
vip) qeQ Xprdist(p’,q)

Total sensitivities: n



Definition: Coreset
A weighted set C é@ such that

for every k-segment f :

cost(P, f) ~ cost, (C,f)
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Observation:
Points on a segment can be stored by
the two indexes of their end-points

2 3 5 6 7 8 9 10 11 t




Observation:

Points on a
the two ind
and the slo

segment can be stored by
exes of their end-points

e of the segment




Observation:

Points on a
the two ind
and the slo

segment can be stored by
exes of their end-points

e of the segment




Observation 2:

We can solve optimally for k = 1 (1 segment)
by solving a simple linear regression problem
on the set of points.

A

Best fitted line for
the set {pq4, ", pg}




Coreset for k-segment Mean

Definition: (k, €)-coreset

Let P € R4*1 be asignal, k > 1 and ¢ > 0.

Let D be a set of items, and cost’(D,-) be a function that maps every k-segment f to a non-

negative number. Then (D, cost’) is a (k, €)-coreset for P if for every k-segment f we have

(1 —¢€)cost(P,f) < cost'(D,f) < (1 + &)cost(P, f).



Coreset for k-segment Mean

. See main algorithm to understand D better
Definition: cost’(D, f) s

Let D = {(C;, gi, b;, e;)}™, where for every i € [m] we have C; € R%*1, g;: R - R% and

b;, e; € R such that b; < e;. For a k-segment f: R —» R% and i € [m] we say that C; is served by
one segment of f if {f(t)|b; < t < e;}is a linear segment. We denote by Good(D, f) € [m] the
union of indices i such that C; is served by one segment of f. We also define

L; ={g;(t)|b; <t < e;}, the projection of C; on g;. We define cost’(D, f) as

z cost(C;, f) + z cost(L;, f).

ieGood(D,f) ie[m]\Good(D,f)



Our Main Compression Theorem

[ACM GIS’12, with C. Sung, and D. Rus ]

Theorem:

For every discrete signal P of n points in R%, there is a (k, €)-coreset for P of

kl . .
Zf n) that can be computed in the big data model, and can be

space O (
computed in O (g) time.

See Algorithm BALANCEDPARTITION.



K —segments Bicriteria

Algorithm 1: BICRITERIA (P, k)

L R S

=T | B SN

Input: A set P C R and an integer k > 1
Output: An (O(logn), O(logn))-approximation to the k-segment mean of P.
if n <2k + 1 then
f :=a l-segment mean of P;
L return f:

Sett; <---<tpandpy, -+ ,pp, € R¥suchthat P = {(t1,p1), - . (tn.pn)}
m+« {teR|(t,p) € P}
Partition P into 4k sets Py, --- , Por € P such that for every i € [2k — 1]:

m

) [{t| (t,p) e Pi}| = {—J .and (i) if (t,p) € Pyand (t',p") € Py 1 thent < t'.

Ak

8 for i := 1104k do

10

11

13

| L Compute a 2-approximation g; to the 1-segment mean of F;

() := the union of k& + 1 signals P; with the smallest value cost(F;, g;) among
i € [2k].
h := BICRITERIA( P \ @, k): Repartition the segments that did not have a good
approximation
Set

f(t) = gi(t) 3(t,p) € P such that P; € Q

77 h(t)  otherwise '

return f;

Input:
A signal P € R%, and an

integer k.

Output:

An (a, B)-approximation
[’ to the k-segment
mean of P.

a,3 = 0(logn)




K —segments Algorithm

o = cost(P,f")
Mere f' is the output of

Algorithm 2: BALANCEDPARTITION(P, s, 0y the Bicriteria algorithm

Input: A set P = {(1,p1), -+, (n,p,)} in R4
an error parameters € € (0,1/10) and o > 0.
Output: A set D that satisfies Theorem 4]

1 Q:=0:D =0: p,s1:=an arbitrary point in R% ;

2 fori:=1ron+1do

3 Q = Q J{(4,p;)}: Add new point to tuple

4 f* := alinear approximation of Q;: A := cost(Q, f*)

5 if A\ >ocori=n-+1then

6 T :=Q\ {(i,p;)} ; take all the new points into tuple / We will show how to compute

7 C' :=a(1,e/4)-coreset for T'; Approximate points by a local a (1, €)-coreset later
representation

8 g := a linear approximation of T, b := i — |T'|, e := 7 — 1. save
endpoints

9 D :=DU{(C,g,b,e)} ;save a tuple

10 Q := {(i,pi) } : proceed to new point

11 return D




K —segments Algorithm

g=2

Q=1{1,p1)}

Fori:=1 - ndo

Q =QUi(i,p);}




K —segments Algorithm

g=2

Q = {(11 pl): (27 pZ)}

Fori:=1 - ndo

Q =QUi(i,p);}




K —segments Algorithm

g=2

Q = {(11 pl): (2' pZ)}
A=0

Fori:=1->ndo
Q=0QUilip)}
f* = alinear approx.
of Q.
A =cost(Q,f")




K —segments Algorithm

g=2

Q = {(11 pl): (2' pZ)r (3' pB)}
A=0

Fori:=1 - ndo

Q =QUi(i,p);}




K —segments Algorithm

g=2

Q = {(17 pl): (2' pZ)r (3' pB)}
A=1

Fori:=1—->ndo
Q =QUiip)}
f* = alinear approx.
of Q.
A =cost(Q,f")




K —segments Algorithm

g=2

Q ={(1,p1), (2,02),(3,p3), (4, ps)}
A=1

Fori:=1 - ndo

- Q=0QUii,p);




K —segments Algorithm

g=2

Q ={(1,p1), (2,02),(3,p3), (4, ps)}
A=1

Fori:=1—->ndo

- Q=QuU{(i,p)}

- [ =alinear approx.
of Q.

- A=cost(Q,f")




K —segments Algorithm

g=2

Q = {(17 pl): (2' pZ)r (3' p3); (47 p4)r (5' pS)}
A=1

Fori:=1 - ndo

- Q=0QUii,p);




K —segments Algorithm

g=2

Q = {(17 pl): (2' pZ)) (3' p3); (41 p4)r (57 pS)}
A=5

Fori:=1—->ndo

- Q=QuU{(i,p)}

- [ =alinear approx.
of Q.

- A=cost(Q,f")




K —segments Algorithm

g=2

Q = {(11 pl): (2' pZ)r (3' P3), (47 p4)r (5' pS)}
A=5

Fori:=1—->ndo
- Q=QuU{(i,p)}
- [ =alinear approx.
of Q.
- A=cost(Q,f")
ifA>o




K —segments Algorithm

g=2

Q = {(17 pl): (2' pZ)) (3' p3)1 (41 p4)r (57 pS)}
A=5

Fori:=1 - ndo

- Q=0QUii,p);

- [ =alinear approx.

of Q.
- A=cost(Q,f")
ifA>o

:C = (1,2)—coreset
forT.




K —segments Algorithm

g=2

Q = {(17 pl): (2' pZ)r (3' p3); (47 p4)r (5' pS)}
A=5

Fori:=1 - ndo

- Q=0QUii,p);

- [ =alinear approx.
of Q.
- A=cost(Q,f")
ifA>o

-(C = (1,2)—coreset
forT.

save endpoints.




K —segments Algorithm

o=2
Q — {(11 pl): (27 pZ): (3' pB)r (4' p4-)r (5' pS)}
A=5
D ={({p1, psa} 91, 1,4)}
o9
Ps
® O
O
—
b=1 e =4

Fori:=1—->ndo
- Q=QuU{(i,p)}
- [ =alinear approx.
of Q.
- A=cost(Q,f")
ifA>o

:C = (1,2)—coreset
forT.

save endpoints.
-D=DU{(C,g,b,e)}.




K —segments Algorithm

g=2

Q — {(51 pS)}
A=5
D = {({p1,ps},

,1,4)}

Fori:=1—->ndo
Q=0QuUi(ip)}
f* = alinear approx.
of Q.
A =cost(Q,f")
ifA>o

-(C = (1,2)—coreset
forT.

save endpoints.
-D=DU{(C,g,b,e)}.

-Q =16, po)3.




Fori:=1 - ndo

K —segments Algorithm 0 =0 U{Gip)}

g=2

Q — {(51 pS)r (67 p6)}
A=5
D ={({p1,ps}, 91, 1,4)}




Fori:=1 - ndo

Q =QUi(i,p);}

f* = alinear approx.

K —segments Algorithm

g=2
of Q.
Q = {(51 pS)r (67 p6)} _ *
N A = cost(Q, ")
D ={({p1, ps}, 91, 1,4)}
o9
Ps .
e e
O
I I T N R N I SO R B .




K —segments Algorithm

g=2

Q = {(57 p5); (6' p6)r (7' p7)}
A=0

D ={({p1, vs},

,1,4)}

Fori:=1 - ndo

Q =QUi(i,p);}




Fori:=1 - ndo

Q =QUi(i,p);}

f* = alinear approx.

K —segments Algorithm

o=2
of Q.
Q — {(57 P5), (6' p6); (7' p7)} _ *
N A = cost(Q, ")
D ={({p1, ps}, 91, 1,4)}
o9
Ps .

O "
o p
| N I IR N N N I N B .




K —segments Algorithm

g=2

Q = {(57 P5), (6' p6); (7' p7)) (81 p8)}
A=0

D ={({p1, vs},

,1,4)}

Fori:=1 - ndo

- Q=0QUii,p);




K —segments Algorithm

g=2

Q = {(57 P5), (6' p6); (7' p7)) (81 p8)}
A=3

D ={({p1, vs},

,1,4)}

Fori:=1—->ndo
Q=0QuUi(ip)}
f* = alinear approx.
of Q.
A =cost(Q,f")




Fori:=1 - ndo

- Q=0QUii,p);

- [ =alinear approx.

K —segments Algorithm

o=2
of Q.
Q={(S,Ps),(6,296),(7,297),(8,298)} _ /1 — COSt(Q f*)
A=3 ifA>0 |
D =1(ip1, s} 91, 1,4} ]
o9
OPS

o O
O ¢ O

I N IR N I B B .




K —segments Algorithm

g=2

Q = {(57 Ps), (6' p6)' (7' p7)) (81 p8)}
A=3

D ={({p1, vs},

,1,4)}

Fori:=1 - ndo

- Q=0QUii,p);

- [ =alinear approx.

of Q.
- A=cost(Q,f")
ifA>o

:C = (1,2)—coreset
forT.




K —segments Algorithm

g=2

Q = {(57 P5), (6' p6); (7' p7)) (81 p8)}
A=3
D = {(lp1, pas,

,1,4)}

Fori:=1 - ndo

- Q=0QUii,p);

- [ =alinear approx.
of Q.
- A=cost(Q,f")
ifA>o

-(C = (1,2)—coreset
forT.

save endpoints.




K —segments Algorithm

o=2
Q — {(51 pS)r (6' p6)1 (77 p7): (87 p8)}
A=3
D = {({p1, pa},
({p6' p7}1

) 1;4)1
) 5)7)}

Fori:=1—->ndo
- Q=Quilp)}
- [ =alinear approx.
of Q.
- A=cost(Q,f")
ifA>o

-(C = (1,2)—coreset
forT.

save endpoints.
-D=DU{(C,g,b,e)}.




K —segments Algorithm

o=2
Q — {(81 p8)}
A=3
D = {({pl; p4}; ’ 114)1
({p6' p7}; 92, 517)}
o9
OPS
O ® O
® o
1 | I R I .

Fori:=1—->ndo
Q=0QuUi(ip)}
f* = alinear approx.
of Q.
A =cost(Q,f")
ifA>o

-(C = (1,2)—coreset
forT.

save endpoints.
-D=DU{(C,g,b,e)}.

B Q — {(l, pl)}




K —segments Algorithm

Q = {(8,p5),(9,p9)}

A A=3
D = {({P1; p4}; ’ 114)1
({p6' p7}; 92, 517)}
@ ® Po
OPS O
o O
O ¢ O
I I I | I I | I | >

Fori:=1 - ndo

= Q Ui, p)}




K —segments Algorithm

Algorithm 2: BALANCEDPARTITION(P, ¢, o)

Input: A set P = {(1,p1), -+, (n,p,)} in R4
an error parameters € € (0,1/10) and o > 0.
Output: A set D that satisfies Theorem 4]

1 Q:=0:D =0: p,s1:=an arbitrary point in R% ;

2 fori:=1ron+1do

3 Q = Q J{(4,p;)}: Add new point to tuple

4 f* := alinear approximation of Q;: A := cost(Q, f*)

5 if A\ >ocori=n-+1then

6 T :=Q\ {(i,pi)} : take all the new points into tuple

7 C' :=a(1,e/4)-coreset for T'; Approximate points by a local
representation

8 g := a linear approximation of T, b := i — |T'|, e := 7 — 1. save
endpoints

9 D :=DU{(C,g,b,e)} ;save a tuple

10 Q := {(i,pi) } : proceed to new point

11 return D

We now prove that the output
D of our algorithm is a
(k, €)-coreset for P.




K —segments Algorithm (Proof)

Proof Let m = |D| and f be a k-segment. We denote the ith coreset segment in D by
(C5, gi, b, e;) for every i € [m]. For every i € [m] we have that C; is a (1,=/4)-coreset for a
corresponding subset 7' = T; of P. By the construction of D we also have P =T7U---UT,,.

Using Definition 3| of cost’(D, f), Good(D, f) and L;, we thus have

lcost(P, f) — cost'(D, f)]

= |Zcoat(Ti¢f) — Z cost(Cy, f) + Z cost(L;. f) | |
i=1

i€Good(D,f) ie[m]\Good(D,f)

2
= | Z (cost(T;, f) — cost(Cy, f)) + Z (cost(T;, f) — cost(L;, f)) (2)
i€CGood(D,f) i€[m]\Good(D,f)
< Z \cost(T;, f) — cost(Cy, f)| + Z |cost(T3, f) — cost(L;, f)].
icGood(D,f) i€[m]\Good(D,f)

where the last inequality is due to the triangle inequality. We now bound each term in the
right hand side.



For every i € Good(D, f) we have that C; is a (1,2/4)-coreset for T;, so

ccost (13,
lcost(T3, f) — cost(Cy, f)| < === 51 - J).
For every i € [m] \ Good(D, f), we have
jcost(T;, f) —cost(La, f)l = | > llp=F(OI* = ZII% —
(p,t)eT;
=| 2. (lp= @I = llgi(t) = F@)?) (4)
(p,t)eT;
< > llp=FOIF = llaat) = £ (5)
(p,t)ET;
12]|gi(t) —plI* | ellp — f(B)]
< Yy ( - - ; ) (6)
(p.t)eT;
_ IQCosthi,gi) N Ecost(f]}-._ f) < Qia . Ecost‘()Ti? f)? (7)

where (b)) 1s by the triangele inequality. and (6) 18 by the weak triangle inequalitv (see (Feld-
LE t‘ LT w l LE)

man et al.| 2013, Lemma 7.1)). The inequality in is because by construction cost(7T', f*) <

o for some 2-approximation f* of the 1-segment mean of 7. Hence, cost(T', g;) < 2cost(T, f*) <

2.



Plugging and n yields

, ecost(T;, f) 20 €
lcost(P, f) — cost’ (D, f)| < Z 1 S+ Z ( P 5‘3‘-0513(Ti=f))

i€Good (D, f) ie[m|\Good(D,f)

< (; n 9) cost(P, f) + 2k

J

-

where in the last inequality we used that fact that |[m] \ Good(D, f)| < k—1 < k since f
1s a k-segment. Substituting o yields

3¢ ccost(P, h
lcost(P, f) — cost’(D, )| < 1 cost(P, f) + milft h)
= Bicu%t(P f)+ “cos;tiP,f) — ccost( P, f).

Bound on |D|: Let i € [m — 1], consider the values of T', () and A during the execution
of Line [7|when T' = T; 1s constructed. Let ); = @@ and \; = A. The cost of the 1-segment
mean of ); is at least \;/2 > /2 > 0, which implies that |Q;| > 3 and thus |7;| > 1. Since
Qi—1 1s the union of 751 with the first point of 7; we have Q;—1 C T;-1 UTj. By letting ¢"
denote a l-segment mean of 7;_1 UT; we have

cost(T;_1 UT;. g%) > cost(Qi_1.9%) > \i/2 > 0 /2.



Bound on |D|: Let i € [m — 1], consider the values of T', @ and A during the execution
of Line |7\ when 1" = T; 1s constructed. Let ¢); = @) and A\; = A. The cost of the 1-segment
mean of (); is at least \;/2 > ¢ /2 > 0, which implies that |Q;| > 3 and thus |7;| > 1. Since
(Qi—1 1s the union of 751 with the first point of 7; we have ;1 C T;-1 UTj. By letting ¢"
denote a 1-segment mean of 7;_1 UT; we have

cost(T;_1 UT;. g%) > cost(Qi_1.97) > \i/2 > 0 /2.

Suppose that for our choice of i € [m — 1], the points in 7;_; UT} are served by a single
segment of h, i.e, {h(t) | bi—1 <t < e;} is a linear segment. Then

cost(Ti—1.h) + cost(T;, h) = cost(T;_1 UT;. h) > cost(T;_1 UT;.g%) > o /2. (8)

Let G C [m — 1] denote the union over all values i € [m — 1] such that 7 is both even
and satisfies (8). Summing over G yields

cost(P,h) = Z cost(T;, h) > Z(cost(ﬂ_l._ h) 4+ cost(T;.h)) > |G|lo/2. (9)
1€[m] 1eG



Since h is a ([3k)-segment, at most (k) —1 sets among T, --- , T}, are not served by a single
segment of h, so |G| > (m — Bk)/2. Plugging this in vields cost(P,h) > (m — Bk)o /4.
Rearranging,

m < dcost(P, ) + Bk =0 (L";) + k. (10)
(T

Running time:
In a few slides we will show an algorithm to compute a (1, €)-coreset C in time O ( ) for n points. This

algorithm is dynamic and supports insertions of a new pointin O ( ) time. Therefore, updating the 1-

d nd
segment mean f* and the coreset C can be done in O ( ) time per point, and the overall time is O (54)

time.




Coreset for 1-segment Mean

Algorithm 7: 1-SEGMENTCORESET(F)

Input: A signal P = {(t1.p1), -, (tn,pn)} in R
Output: A (1,0)-coreset (C,w) that satisfies Claim [15]
Set X € R™*(442) to be matrix whose ith row is (1,¢;, p;) for every i € [n].
Compute the thin SVD X = UXV7T of X.

Set u € R™?2 to be the leftmost column of TV 7.

Set w = % /* w >0 since ||X| =||X]| >0 */

Set Q.Y = R(d+2)x(d+2) {4 he unit ary matrices whose leftmost columns are u/| u||

and (/w, -, v/w)/||u|| respectively.
Set B € R@+2)x(d+1) t5 be the (d + 1) rightmost columns of YQTXVT /| /w.

7 Set C' C R4 to be the union of the rows in B :
8 return (C,w)

moE W ok =

=
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Claim 15: Accurate (1,0)-coreset

Let P € R%*! be a signal, k > 1. Let (C,w) be an output of a call to 1-SEGMENCORESET (P).
Then (C,w) isa (1,0)-coreset for P of size |C| = d + 1. Formally, for every 1-segment f we
have

cost(P,f) = w - cost(C, f).

Moreover, C and w can be computed in 0(nd?) time.

The size and running time of the above (1,0)-coreset C might be too large. Therefore, we

. 1 d\ ..
then show how to construct a (1, €)-coreset of size O (5_2) that takes O (2—4) time.
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Proof:

Let f be a 1-segment. Hence, there are row vectors a, b € R such that f(t)=a+b-tfor
T
rQTu _ (V.. VW) . The leftmost column of

llull llull

every t € R. Bu definition of Q and Y we have that
YOTEVT isthus YQTu = (Ww, ..., A/w)T.

Therefore,

cost(P,f) = ) Nf@®=pl2= D lla+b-t—pl?

(t,p)EP (t,p)EP
- - 2 - - 2
1 t; p|[a a 1|12 a 1| Jw a
= : [b‘ = [luzVvT b] = |lyoTzvT b‘ =l : +wB lb]
1 t, | l-1 ~1 ~1 W —1
1 . a 2
will: B lb‘ =w- z la+b-t—p|l> =w-cost(C,f).
1 Il (tp)EB
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Smaller coreset with less
computation time.

Theorem: (1, £)-coreset

Let P € R4*1 gnd let £ > 0.

A (1, ¢)-coreset C € R for P of size |C| = O (812) can be computed in O (Z—Z) time.

Proof It was proven in Feldman et al.| (2013) that a coreset for P and a family of query
shapes, where each shape is spanned by O(1) vectors in R?, can be computed by projecting
P on a (1/2?) dimensional subspace S that minimizes the sum of squared distances to P
up to a (1 + ¢) factor. The resulting coreset approximates the sum of squared distances to
every such shape up to a factor of (1 + =). The size of this coreset is n, the same as the
input size, however the coreset is contained in an O(1/£?) dimensional subspace. We then
compute a (1,0)-coreset C' for this low dimensional set of n points in s = O(1/£?) space
using Algorit.hm as per Claim |15, This will take additional O(ns?) time and the resulting
coreset will be of size O(s).

The subspace S can be computed deterministically in O(nd/s?) using a recent result
of Ghashami and Phillips (2014).. |
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Corollary:

Let € € (0,1). A (1 + €)-approximation to the 1-segment mean of P can be computed in O (Z—f) time.

Proof:

Based on the previous Theorem, we can compute a (1, £)-coreset C of size |[C| = O (3_12) in O (Z—f) time.
Then, using the singular value decomposition (solving linear regression), it is easy to compute a 1-
segment mean f of Cin0(d - |C|?) =0 (%) time. Let f* be a 1-segment mean of P and f be a 1-
segment mean of C. Then °

cost(P,f) < (1 + g)cost(C,f) < (1 + &)cost(C,f*) < (1 + e)?cost(P, f*) < (1 + 3¢)cost(P, f*).

Replacing € with § in the above proof proves the corollary.



