
Big Data
Class

LECTURER: DAN FELDMAN

TEACHING ASSISTANTS:

IBRAHIM JUBRAN

ALAA MAALOUF

Department of Computer Science, University of Haifa.

2

3

4

Big Data Big Noise

5

GPS Compression
[Feldman, Wu, Julian, Sung & Rus.]

• Quadrobot collects data using attached smartphone

• Terabytes

= 4 hours of image snapshots from Quadrobot

• Challenge: Real-time compression

6

𝑘-Segment mean
The 𝑘-segment 𝑓∗that minimizes the fitting cost
from points to a d-dimensional signal

𝑘 = 5

𝑑 = 1

1 2 3 4 5 6 7 8 9 10 11
t

10 11p =

10 10|| (10) ||p f−

9

5

11

y

(10)f

෍

𝑡

|| 𝑝𝑡 − 𝑓(𝑡)|| 2

7

𝑘 − Segment Queries

Input: d-dimensional signal P over time

1 2 3 4 5 6 7 8 9 10 11
t

10

9

5

11

y

Input: d-dimensional signal P over time
Query: k segments over time

1 2 3 4 5 6 7 8 9 10 11
t

10

9

5

11

y

𝑘 − Segment Queries

k-Piecewise linear function f over t

Input: d-dimensional signal P over time
Query: k segments over time
Output: Sum of squared distances from P

𝑘 − Segment Queries

1 2 3 4 5 6 7 8 9 10 11
t

10 11p =

10 10|| (10) ||p f−

9

5

11

y

(10)f

cost 𝑃, 𝑓 : = ෍

𝑡

‖𝑓(𝑡) − 𝑝𝑡‖
2

Coreset
A weighted set 𝐶 such that
for every k-segment f :

cost 𝑃, 𝑓 ~ costw 𝐶, 𝑓

1 2 3 4 5 6 7 8 9 10 11
t

10

9

5

11

y

1 2 3 4 5 6 7 8 9 10 11
t

10 11p =

10 10|| (10) ||p f−

9

5

11

y

(10)f

~

෍

𝑡

‖𝑓(𝑡) − 𝑝𝑡‖
2 ෍

𝑝𝑡∈𝐶

𝑤 𝑝𝑡 ⋅ 𝑓 𝑡 − 𝑝𝑡
2

1 ± 𝜖

Different cost function

Observation:
No small coreset 𝐶 ⊂ 𝑃 exists
for k-segment queries

Input P: n points on the x-axis

1 2 3 4 6 7 8 9 10 11
t5

1 2 3 4 6 7 8 9 10 11
t5

Coreset C: all points except one

Input P: n points on the x-axis

Input P: n points on the x-axis

Coreset C: all points except one

Query f: covers all except this one

1 2 3 4 6 7 8 9 10 11
t5

1 2 3 4 6 7 8 9 10 11
t

5|| (5) ||p f−

5

Input P: n points on the x-axis

Coreset C: all points except one

Query f: covers all except this one

Cost(𝑃, 𝑓) > 0

Cost(𝐶, 𝑓) = 0

Input P: n points on the x-axis

Coreset C: all points except one

Query f: covers all except this one

Cost(𝑃, 𝑓) > 0 Unbounded factor
approximation

1 2 3 4 6 7 8 9 10 11
t

5|| (5) ||p f−

5

Cost(𝐶, 𝑓) = 0

For every point p:

Sensitivity(p) = max
𝑞∈𝑄

𝑑𝑖𝑠𝑡(𝑝,𝑞)

σ𝑝′ 𝑑𝑖𝑠𝑡(𝑝′,𝑞)
= 1

Total sensitivities: n

Definition: Coreset
A weighted set 𝐶 ⊂ 𝑃 such that
for every k-segment f :

cost 𝑃, 𝑓 ~ costw 𝐶, 𝑓

1 2 3 4 5 6 7 8 9 10 11
t

10

9

5

11

y

1 2 3 4 5 6 7 8 9 10 11
t

10 11p =

10 10|| (10) ||p f−

9

5

11

y

(10)f

~

෍

𝑡

𝑓 𝑡 − 𝑝𝑡 ෍

𝑝𝑡∈𝐶

𝑤 𝑝𝑡 ⋅ 𝑓 𝑡 − 𝑝𝑡

Observation:
Points on a segment can be stored by
the two indexes of their end-points

1 2 3 4 6 7 8 9 10 11
t5

1 2 3 4 5 6 7 8 9 10 11
t

Observation:
Points on a segment can be stored by
the two indexes of their end-points
and the slope of the segment

1 2 3 4 5 6 7 8 9 10 11
t

Observation:
Points on a segment can be stored by
the two indexes of their end-points
and the slope of the segment

Observation 2:
We can solve optimally for 𝑘 = 1 (1 segment)
by solving a simple linear regression problem
on the set of points.

𝑝1 𝑝2

𝑝3 𝑝4

𝑝5

𝑝6

𝑝7

𝑝8 Best fitted line for
the set 𝑝1, ⋯ , 𝑝8

Coreset for k-segment Mean

Definition: (𝒌, 𝜺)-coreset

Let 𝑃 ⊆ ℝ𝑑+1 be a signal, 𝑘 ≥ 1 and 𝜀 > 0.

Let 𝐷 be a set of items, and 𝑐𝑜𝑠𝑡′(𝐷,⋅) be a function that maps every 𝑘-segment 𝑓 to a non-

negative number. Then 𝐷, 𝑐𝑜𝑠𝑡′ is a 𝑘, 𝜖 -coreset for 𝑃 if for every 𝑘-segment 𝑓 we have

1 − 𝜀 𝑐𝑜𝑠𝑡 𝑃, 𝑓 ≤ 𝑐𝑜𝑠𝑡′ 𝐷, 𝑓 ≤ 1 + 𝜀 𝑐𝑜𝑠𝑡 𝑃, 𝑓 .

Coreset for k-segment Mean

Definition: 𝒄𝒐𝒔𝒕′ 𝑫, 𝒇

Let 𝐷 = 𝐶𝑖 , 𝑔𝑖 , 𝑏𝑖 , 𝑒𝑖 𝑖=1
𝑚 where for every 𝑖 ∈ 𝑚 we have 𝐶𝑖 ⊆ ℝ𝑑+1, 𝑔𝑖: ℝ → ℝ𝑑 and

𝑏𝑖 , 𝑒𝑖 ∈ ℝ such that 𝑏𝑖 ≤ 𝑒𝑖. For a 𝑘-segment 𝑓:ℝ → ℝ𝑑 and 𝑖 ∈ 𝑚 we say that 𝐶𝑖 is served by

one segment of 𝑓 if 𝑓 𝑡 𝑏𝑖 ≤ 𝑡 ≤ 𝑒𝑖 is a linear segment. We denote by 𝐺𝑜𝑜𝑑 𝐷, 𝑓 ⊆ 𝑚 the

union of indices 𝑖 such that 𝐶𝑖 is served by one segment of 𝑓. We also define

𝐿𝑖 = 𝑔𝑖 𝑡 𝑏𝑖 ≤ 𝑡 ≤ 𝑒𝑖 , the projection of 𝐶𝑖 on 𝑔𝑖. We define 𝑐𝑜𝑠𝑡′ 𝐷, 𝑓 as

෍

𝑖∈𝐺𝑜𝑜𝑑(𝐷,𝑓)

𝑐𝑜𝑠𝑡 𝐶𝑖 , 𝑓 + ෍

𝑖∈ 𝑚 ∖𝐺𝑜𝑜𝑑 𝐷,𝑓

𝑐𝑜𝑠𝑡 𝐿𝑖 , 𝑓 .

See main algorithm to understand D better

Our Main Compression Theorem

Theorem:

For every discrete signal 𝑃 of 𝑛 points in 𝑅𝑑, there is a 𝑘, 𝜀 -coreset for 𝑃 of

space 𝑂
𝑘𝑙𝑜𝑔 𝑛

𝜖2
that can be computed in the big data model, and can be

computed in 𝑂
𝑑𝑛

𝜖4
time.

See Algorithm 𝐵𝐴𝐿𝐴𝑁𝐶𝐸𝐷𝑃𝐴𝑅𝑇𝐼𝑇𝐼𝑂𝑁.

[ACM GIS’12, with C. Sung, and D. Rus]

K – segments Bicriteria

Input:
A signal 𝑃 ⊆ ℝ𝑑, and an
integer 𝑘.

Output:
An (𝛼, 𝛽)-approximation
𝑓′ to the 𝑘-segment
mean of 𝑃.

𝛼, 𝛽 = 𝑂 log 𝑛

K – segments Algorithm
𝜎 = 𝑐𝑜𝑠𝑡 𝑃, 𝑓′

where 𝑓′ is the output of
the Bicriteria algorithm

We will show how to compute
a 1, 𝜀 -coreset later

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖

𝑄 = 1, 𝑝1

𝑝1

𝜎 = 2

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖

𝑄 = 1, 𝑝1 , 2, 𝑝2

𝑝1

𝜎 = 2

𝑝2

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx.

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

𝑄 = 1, 𝑝1 , 2, 𝑝2

𝑝1
𝑝2

𝜆 = 0

𝜎 = 2

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3

𝑝1
𝑝2

𝜆 = 0

𝜎 = 2

𝑝3

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx.

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3

𝑝1
𝑝2

𝜆 = 1

𝜎 = 2

𝑝3

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3 , 4, 𝑝4

𝑝1
𝑝2

𝜆 = 1

𝜎 = 2

𝑝3
𝑝4

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx.

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

𝑝1
𝑝2

𝜆 = 1

𝜎 = 2

𝑝3

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3 , 4, 𝑝4

𝑝4

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖

𝑝1
𝑝2

𝜆 = 1

𝜎 = 2

𝑝3

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3 , 4, 𝑝4 , 5, 𝑝5

𝑝4

𝑝5

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx.

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

𝑝1
𝑝2

𝜆 = 5

𝜎 = 2

𝑝3
𝑝4

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3 , 4, 𝑝4 , 5, 𝑝5

𝑝5

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx.

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

𝑝1
𝑝2

𝜆 = 5

𝜎 = 2

𝑝3
𝑝4

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3 , 4, 𝑝4 , 5, 𝑝5

𝑝5

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx.

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

- 𝐶 = 1,
𝜖

4
-coreset

for 𝑇.

𝑝1
𝑝2

𝜆 = 5

𝜎 = 2

𝑝3
𝑝4

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3 , 4, 𝑝4 , 5, 𝑝5

𝑝5

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx.

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

- 𝐶 = 1,
𝜖

4
-coreset

for 𝑇.
- 𝑔 = a linear approx.

of 𝑇 +save endpoints.𝑝1
𝑝2

𝜆 = 5

𝜎 = 2

𝑝3
𝑝4

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3 , 4, 𝑝4 , 5, 𝑝5

𝑝5

𝑏 𝑒

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx.

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

- 𝐶 = 1,
𝜖

4
-coreset

for 𝑇.
- 𝑔 = a linear approx.

of 𝑇 +save endpoints.
- 𝐷 = 𝐷 ∪ 𝐶, 𝑔, 𝑏, 𝑒 .

𝑝1
𝑝2

𝜆 = 5

𝜎 = 2

𝑝3
𝑝4

𝑄 = 1, 𝑝1 , 2, 𝑝2 , 3, 𝑝3 , 4, 𝑝4 , 5, 𝑝5

𝑝5

𝑏 = 1 𝑒 = 4

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx.

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

- 𝐶 = 1,
𝜖

4
-coreset

for 𝑇.
- 𝑔 = a linear approx.

of 𝑇 +save endpoints.
- 𝐷 = 𝐷 ∪ 𝐶, 𝑔, 𝑏, 𝑒 .

- 𝑄 = 𝑖, 𝑝𝑖 .

𝑝1
𝑝2

𝜆 = 5

𝜎 = 2

𝑝3
𝑝4

𝑄 = 5, 𝑝5

𝑝5

𝑏 = 1 𝑒 = 4

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖

𝑝1
𝑝2

𝜆 = 5

𝜎 = 2

𝑝3
𝑝4

𝑄 = 5, 𝑝5 , 6, 𝑝6

𝑝5
𝑝6

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx.

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

𝑝1
𝑝2

𝜆 = 0

𝜎 = 2

𝑝3
𝑝4

𝑝5

𝑄 = 5, 𝑝5 , 6, 𝑝6

𝑝6

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖

𝑝1
𝑝2

𝜆 = 0

𝜎 = 2

𝑝3
𝑝4

𝑄 = 5, 𝑝5 , 6, 𝑝6 , 7, 𝑝7

𝑝5
𝑝6

𝑝7

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx.

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

𝑝1
𝑝2

𝜆 = 0

𝜎 = 2

𝑝3
𝑝4

𝑝5

𝑄 = 5, 𝑝5 , 6, 𝑝6 , 7, 𝑝7

𝑝6
𝑝7

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖

𝑝1
𝑝2

𝜆 = 0

𝜎 = 2

𝑝3
𝑝4

𝑄 = 5, 𝑝5 , 6, 𝑝6 , 7, 𝑝7 , 8, 𝑝8

𝑝5
𝑝6

𝑝7

𝑝8

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx.

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

𝑝1
𝑝2

𝜆 = 3

𝜎 = 2

𝑝3
𝑝4

𝑝5
𝑝6

𝑝7

𝑄 = 5, 𝑝5 , 6, 𝑝6 , 7, 𝑝7 , 8, 𝑝8

𝑝8

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx.

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

𝑝1
𝑝2

𝜆 = 3

𝜎 = 2

𝑝3
𝑝4

𝑝5
𝑝6

𝑝7

𝑄 = 5, 𝑝5 , 6, 𝑝6 , 7, 𝑝7 , 8, 𝑝8

𝑝8

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx.

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

- 𝐶 = 1,
𝜖

4
-coreset

for 𝑇.

𝑝1
𝑝2

𝜆 = 3

𝜎 = 2

𝑝3
𝑝4

𝑝5
𝑝6

𝑝7

𝑄 = 5, 𝑝5 , 6, 𝑝6 , 7, 𝑝7 , 8, 𝑝8

𝑝8

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx.

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

- 𝐶 = 1,
𝜖

4
-coreset

for 𝑇.
- 𝑔 = a linear approx.

of 𝑇 +save endpoints.𝑝1
𝑝2

𝜆 = 3

𝜎 = 2

𝑝3
𝑝4

𝑝5
𝑝6

𝑝7

𝑄 = 5, 𝑝5 , 6, 𝑝6 , 7, 𝑝7 , 8, 𝑝8

𝑝8

𝑏 = 5 𝑒 = 7

𝐷 = 𝑝1, 𝑝4 , 𝑔1, 1,4

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx.

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

- 𝐶 = 1,
𝜖

4
-coreset

for 𝑇.
- 𝑔 = a linear approx.

of 𝑇 +save endpoints.
- 𝐷 = 𝐷 ∪ 𝐶, 𝑔, 𝑏, 𝑒 .

𝑝1
𝑝2

𝜆 = 3

𝜎 = 2

𝑝3
𝑝4

𝑝5
𝑝6

𝑝7

𝑄 = 5, 𝑝5 , 6, 𝑝6 , 7, 𝑝7 , 8, 𝑝8

𝑝8

𝑏 = 5 𝑒 = 7

𝐷 = { 𝑝1, 𝑝4 , 𝑔1, 1,4 ,
𝑝6, 𝑝7 , 𝑔2, 5,7 }

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖
- 𝑓∗ = a linear approx.

of 𝑄.
- 𝜆 = 𝑐𝑜𝑠𝑡 𝑄, 𝑓∗

if 𝜆 > 𝜎
- 𝑇 = 𝑄 ∖ 𝑖, 𝑝𝑖

- 𝐶 = 1,
𝜖

4
-coreset

for 𝑇.
- 𝑔 = a linear approx.

of 𝑇 +save endpoints.
- 𝐷 = 𝐷 ∪ 𝐶, 𝑔, 𝑏, 𝑒 .

- 𝑄 = 𝑖, 𝑝𝑖 .

𝑝1
𝑝2

𝜆 = 3

𝜎 = 2

𝑝3
𝑝4

𝑝5
𝑝6

𝑝7

𝑄 = 8, 𝑝8

𝑝8

𝑏 𝑒

𝐷 = { 𝑝1, 𝑝4 , 𝑔1, 1,4 ,
𝑝6, 𝑝7 , 𝑔2, 5,7 }

K – segments Algorithm For 𝑖 ≔ 1 → 𝑛 do
- 𝑄 = 𝑄 ∪ 𝑖, 𝑝𝑖

𝑝1
𝑝2

𝜆 = 3

𝜎 = 2

𝑝3
𝑝4

𝑝5
𝑝6

𝑝7

𝑄 = 8, 𝑝8 , 9, 𝑝9

𝑝8

𝑝9

⋮
𝐷 = { 𝑝1, 𝑝4 , 𝑔1, 1,4 ,

𝑝6, 𝑝7 , 𝑔2, 5,7 }

K – segments Algorithm

We now prove that the output
𝐷 of our algorithm is a
𝑘, 𝜀 -coreset for 𝑃.

K – segments Algorithm (Proof)

K – segments Algorithm (Proof)

Running time:

In a few slides we will show an algorithm to compute a (1, 𝜀)-coreset 𝐶 in time 𝑂
𝑛𝑑

𝜀4
for 𝑛 points. This

algorithm is dynamic and supports insertions of a new point in 𝑂
𝑑

𝜀4
time. Therefore, updating the 1-

segment mean 𝑓∗ and the coreset 𝐶 can be done in 𝑂
𝑑

𝜀4
time per point, and the overall time is 𝑂

𝑛𝑑

𝜀4

time.

Coreset for 1-segment Mean

Coreset for 1-segment Mean

Claim 15: Accurate (1,0)-coreset

Let 𝑃 ⊆ ℝ𝑑+1 be a signal, 𝑘 ≥ 1. Let 𝐶,𝑤 be an output of a call to 1-𝑆𝐸𝐺𝑀𝐸𝑁𝐶𝑂𝑅𝐸𝑆𝐸𝑇(𝑃).
Then 𝐶,𝑤 is a 1,0 -coreset for 𝑃 of size 𝐶 = 𝑑 + 1. Formally, for every 1-segment 𝑓 we
have

𝑐𝑜𝑠𝑡 𝑃, 𝑓 = 𝑤 ⋅ 𝑐𝑜𝑠𝑡 𝐶, 𝑓 .

Moreover, 𝐶 and 𝑤 can be computed in 𝑂 𝑛𝑑2 time.

The size and running time of the above 1,0 -coreset 𝐶 might be too large. Therefore, we

then show how to construct a 1, 𝜀 -coreset of size O
1

𝜀2
that takes 𝑂

𝑛𝑑

𝜀4
time.

Coreset for 1-segment Mean
Proof:

Let 𝑓 be a 1-segment. Hence, there are row vectors 𝑎, 𝑏 ∈ ℝ𝑑 such that 𝑓 𝑡 = 𝑎 + 𝑏 ⋅ 𝑡 for

every 𝑡 ∈ ℝ. Bu definition of 𝑄 and 𝑌 we have that
𝑌𝑄𝑇𝑢

𝑢
=

𝑤,…, 𝑤
𝑇

𝑢
. The leftmost column of

𝑌𝑄𝑇Σ𝑉𝑇 is thus 𝑌𝑄𝑇𝑢 = 𝑤,… , 𝑤 𝑇.

Therefore,

𝑐𝑜𝑠𝑡 𝑃, 𝑓 = ෍

𝑡,𝑝 ∈𝑃

𝑛

𝑓 𝑡 − 𝑝 2 = ෍

(𝑡,𝑝)∈𝑃

𝑎 + 𝑏 ⋅ 𝑡 − 𝑝 2

=
1 𝑡1 𝑝1

⋮
1 𝑡𝑛 𝑝𝑛

𝑎
𝑏
−𝐼

2

= 𝑈Σ𝑉𝑇
𝑎
𝑏
−𝐼

2

= 𝑌𝑄𝑇Σ𝑉𝑇
𝑎
𝑏
−𝐼

2

=
𝑤
⋮
𝑤

𝑤𝐵
𝑎
𝑏
−𝐼

2

𝑤
1
⋮
1

𝐵
𝑎
𝑏
−𝐼

2

= 𝑤 ⋅ ෍

𝑡,𝑝 ∈𝐵

𝑎 + 𝑏 ⋅ 𝑡 − 𝑝 2 = 𝑤 ⋅ 𝑐𝑜𝑠𝑡 𝐶, 𝑓 .

Coreset for 1-segment Mean

Theorem: (1, 𝜀)-coreset

Let 𝑃 ⊆ ℝ𝑑+1 and let 𝜀 > 0.

A 1, 𝜀 -coreset 𝐶 ⊆ ℝ𝑑+1 for 𝑃 of size 𝐶 = 𝑂
1

𝜀2
can be computed in 𝑂

𝑛𝑑

𝜀4
time.

Smaller coreset with less
computation time.

Coreset for 1-segment Mean

Corollary:

Let 𝜀 ∈ 0,1 . A (1 + 𝜀)-approximation to the 1-segment mean of 𝑃 can be computed in 𝑂
𝑛𝑑

𝜀4
time.

Proof:

Based on the previous Theorem, we can compute a 1, 𝜀 -coreset 𝐶 of size 𝐶 = 𝑂
1

𝜀2
in 𝑂

𝑛𝑑

𝜀4
time.

Then, using the singular value decomposition (solving linear regression), it is easy to compute a 1-
segment mean 𝑓 of 𝐶 in 𝑂 𝑑 ⋅ 𝐶 2 = 𝑂

𝑑

𝜀4
time. Let 𝑓∗ be a 1-segment mean of 𝑃 and 𝑓 be a 1-

segment mean of 𝐶. Then

𝑐𝑜𝑠𝑡 𝑃, 𝑓 ≤ 1 + 𝜀 𝑐𝑜𝑠𝑡 𝐶, 𝑓 ≤ 1 + 𝜀 𝑐𝑜𝑠𝑡 𝐶, 𝑓∗ ≤ 1 + 𝜀 2𝑐𝑜𝑠𝑡 𝑃, 𝑓∗ ≤ 1 + 3𝜀 𝑐𝑜𝑠𝑡 𝑃, 𝑓∗ .

Replacing 𝜀 with
𝜀

3
in the above proof proves the corollary.

