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Example for Kernel Functions

Gaussian Kernel:

𝑘 𝑥, 𝑦 = 𝑒
−

𝑥−𝑦 2

2𝜎2



Example for Kernel Functions

Sigmoid Kernel:

𝑘 𝑥, 𝑦 = tanh 𝛼𝑥𝑇𝑦 + 𝑐
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Sensitivity for Convex Shapes

• Input: 𝑃 ⊆ 𝑅𝑑 , 𝑃 = 𝑛𝑑 such that 𝑃 is a convex shape.

• Query space: 𝑄 = 𝑥 ∈ 𝑅𝑑 𝑥 = 1 .

• Cost function: 𝑓 𝑃, 𝑥 = max
𝑝∈𝑃

𝑝𝑇𝑥
𝑃
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Sensitivity for Convex Shapes

• Input: 𝑃 ⊆ 𝑅𝑑 , 𝑃 = 𝑛𝑑 such that 𝑃 is a convex shape.

• Query space: 𝑄 = 𝑥 ∈ 𝑅𝑑 𝑥 = 1 .

• Cost function: 𝑓 𝑃, 𝑥 = max
𝑝∈𝑃

𝑝𝑇𝑥

• Goal: Find another shape 𝐶 that can be 
represented by 𝑂 𝑑 vectors such that for 

every x ∈ 𝑄: 𝑓 𝑃, 𝑥 ≤ 𝑓 𝐶, 𝑥 ≤ 𝑑 ⋅ 𝑓 𝑃, 𝑥

𝑃

𝑥 𝑓 𝑃, 𝑥



Sensitivity for Convex Shapes

• Goal: Find another shape 𝐶 that can be 
represented by 𝑂 𝑑 vectors such that for 
every x ∈ 𝑄: 𝑓 𝑃, 𝑥 ≤ 𝑓 𝐶, 𝑥 ≤ 𝛼 ⋅ 𝑓 𝑃, 𝑥

• Suggestion 1: Set 𝐶 to be the minimum 
enclosing circle of 𝑃.

𝑃

𝐶
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Sensitivity for Convex Shapes

• Goal: Find another shape 𝐶 that can be 
represented by 𝑂 𝑑 vectors such that for 
every x ∈ 𝑄: 𝑓 𝑃, 𝑥 ≤ 𝑓 𝐶, 𝑥 ≤ 𝛼 ⋅ 𝑓 𝑃, 𝑥

• Suggestion 1: Set 𝐶 to be the minimum 
enclosing circle of 𝑃.

→ Circle is not a good approximation

since 
𝑓 𝐶,𝑥

𝑓 𝑃,𝑥
→ ∞

𝐶
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represented by 𝑂 𝑑 vectors such that for 
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enclosing ellipsoid of 𝑃.
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Sensitivity for Convex Shapes

• Goal: Find another shape 𝐶 that can be 
represented by 𝑂 𝑑 vectors such that for 
every x ∈ 𝑄: 𝑓 𝑃, 𝑥 ≤ 𝑓 𝐶, 𝑥 ≤ 𝛼 ⋅ 𝑓 𝑃, 𝑥

• Suggestion 2: Set 𝐶 to be the minimum 
enclosing ellipsoid of 𝑃.

𝐸𝑃Theorem: (John’s Ellipsoid)

Every convex shape 𝑃 contains an 

ellipsoid 
𝐸

𝑑
such that the ellipsoid 𝐸 contains 𝑃. 

𝐸

𝑑



Sensitivity for Convex Shapes

𝐸𝑃

Theorem: (John’s Ellipsoid)

Every convex shape 𝑃 contains an 

ellipsoid 
𝐸

𝑑
such that the ellipsoid 𝐸 contains 𝑃.

𝐸

𝑑

→ For every 𝑥 ∈ 𝑄:

𝑓 𝑃, 𝑥 ≤ 𝑓 𝐸, 𝑥 ≤ 𝑑 ⋅ 𝑓
𝐸

𝑑
, 𝑥 ≤ 𝑑 ⋅ 𝑓 𝑃, 𝑥



Sensitivity for Convex Optimization

• Input: 𝑃 ∈ 𝑅𝑛×𝑑 such that 𝑃 is a convex shape.

• Query space: 𝑄 = 𝑥 ∈ 𝑅𝑑 𝑥 = 1 .

• Cost function: 𝑘 𝑝, 𝑥 = 𝑝𝑥 , 𝑓 𝑃, 𝑥 = σ𝑝∈𝑃 𝑘 𝑝, 𝑥 = 𝑃𝑥 1

𝑘 𝑝, 𝑥 ~𝑔 𝑝𝑥



Sensitivity for Convex Optimization

• Input: 𝑃 ∈ 𝑅𝑛×𝑑 such that 𝑃 is a convex shape.

• Query space: 𝑄 = 𝑥 ∈ 𝑅𝑑 𝑥 = 1 .

• Cost function: 𝑘 𝑝, 𝑥 = 𝑝𝑥 , 𝑓 𝑃, 𝑥 = σ𝑝∈𝑃 𝑘 𝑝, 𝑥 = 𝑃𝑥 1

𝑘 𝑝, 𝑥 ~𝑔 𝑝𝑥

• Notice that: 𝑓 𝑥 ~ 𝐸𝑥 = ‖𝐷𝑉𝑇𝑥‖

Lemma:

The sensitivity of a point 𝑝 ∈ 𝑃 is at most

max
𝑥∈𝑄

𝑘 𝑝, 𝑥

𝑓 𝑃, 𝑥
≤෍

𝑖=1

𝑑

𝑘 𝑝, 𝐸−1𝑒𝑖

𝑒𝑖 = 0,⋯ , 0,1,0,⋯ , 0
𝑖



Sensitivity for Convex Optimization

Lemma:

The sensitivity of a point 𝑝 ∈ 𝑃 is at most

max
𝑥∈𝑄

𝑘 𝑝, 𝑥

𝑓 𝑃, 𝑥
≤෍

𝑖=1

𝑑

𝑘 𝑝, 𝐸−1𝑒𝑖

Proof:

𝑘 𝑝, 𝑥

𝑓 𝑃, 𝑥
~
𝑘 𝑝, 𝑥

𝐸𝑥
~𝑘 𝑝,

𝑥

𝐸𝑥
= 𝑘 𝑢𝐸, 𝐸−1, 𝑦 ~𝑔 𝑢𝑦 ≤ 𝑔 𝑢 2

≤ 𝑔 𝑢 1 = 𝑔 ෍

𝑖=1

𝑑

𝑢𝑒𝑖 ~෍

𝑖=1

𝑑

𝑔 𝑢𝑒𝑖 ~෍

𝑖=1

𝑑

𝑘 𝑢𝐸, 𝐸−1𝑒𝑖

=෍

𝑖=1

𝑑

𝑘 𝑝, 𝐸−1𝑒𝑖



Sensitivity for Convex Optimization

Lemma:

The sensitivity of a point 𝑝 ∈ 𝑃 is at most

max
𝑥∈𝑄

𝑘 𝑝, 𝑥

𝑓 𝑃, 𝑥
≤෍

𝑖=1

𝑑

𝑘 𝑝, 𝐸−1𝑒𝑖

Hence, the total sensitivity is:

෍

𝑝∈𝑃

෍

𝑖=1

𝑑

𝑘 𝑝, 𝐸−1𝑒𝑖 =෍

𝑖=1

𝑑

෍

𝑝∈𝑃

𝑘 𝑝, 𝐸−1𝑒𝑖

=෍

𝑖=1

𝑑

𝑓 𝐸−1, 𝑒𝑖 ~෍

𝑖=1

𝑑

‖𝐸 ⋅ 𝐸−1 𝑒𝑖‖~෍

𝑖=1

𝑑

‖ 𝑒𝑖‖ = 𝑑





𝑘-Segment mean

• Input: 𝑃 = {(1, 𝑝1), … , (1, 𝑝𝑛) | 𝑝𝑖 ∈ 𝑅𝑑} ⊆ 𝑅𝑑+1

• k-segment: 𝑓: 𝑅 → 𝑅𝑑

• Query space: 𝑄 = {𝑓 ∣ 𝑓 𝑖𝑠 𝑎 𝑘 − 𝑠𝑒𝑔𝑚𝑒𝑛𝑡}}

• Cost function: 𝑐𝑜𝑠𝑡 𝑃, 𝑓 = σ𝑖=1
𝑛 𝑝𝑖 − 𝑓 𝑖 2

2

• OPT = min
𝑓∈𝑄

𝑐𝑜𝑠𝑡 𝑃, 𝑓

• k-segment mean   𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑓 𝑐𝑜𝑠𝑡 𝑃, 𝑓



𝑘-Segment mean
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𝑘-Segment mean

1 2 3 4 5 6 7 8 9 10 11
t

10 11p =

10 10|| (10) ||p f−

9

5

11

y

(10)f

𝑐𝑜𝑠𝑡 𝑃, 𝑓 = ෍

𝑖=1

𝑛

𝑝𝑖 − 𝑓 𝑖 2
2



Coreset for 𝑘-Segment mean

• Input: 𝑃 = {(1, 𝑝1), … , (1, 𝑝𝑛) | 𝑝𝑖 ∈ 𝑅𝑑} ⊆ 𝑅𝑑+1

• k-segment: 𝑓: 𝑅 → 𝑅𝑑

• Query space: 𝑄 = {𝑓 ∣ 𝑓 𝑖𝑠 𝑎 𝑘 − 𝑠𝑒𝑔𝑚𝑒𝑛𝑡}}

• Cost function: 𝑐𝑜𝑠𝑡 𝑃, 𝑓 = σ𝑖=1
𝑛 𝑝𝑖 − 𝑓 𝑖 2

2

• Output: 𝑪,𝝎 𝑤ℎ𝑒𝑟𝑒 𝐶 ⊆ 𝑃, 𝜔: 𝐶 → 𝑅 𝑠. 𝑡. ∀𝑓 ∈ 𝑄:

෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2 − ෍

𝑝𝑖∈𝐶

𝝎 𝑝𝑖 ⋅ 𝑝𝑖 − 𝑓 𝑖 2
2 ≤ 𝜖 ⋅ ෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2



Coreset for 𝑘-Segment mean

෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2 − ෍

𝑝𝑖∈𝐶

𝝎 𝑝𝑖 ⋅ 𝑝𝑖 − 𝑓 𝑖 2
2 ≤ 𝜖 ⋅ ෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2

1 2 3 4 5 6 7 8 9 10 11
t

10

9

5

11

y

1 2 3 4 5 6 7 8 9 10 11
t

10 11p =

10 10|| (10) ||p f−

9

5

11

y

(10)f

~

1 ± 𝜖



Theorem [Feldman, Langberg, STOC’11]

Let 𝑃, 𝑄 and 𝑑𝑖𝑠𝑡: 𝑃𝑥𝑄 → 𝑅+.

A sample 𝐶 ⊆ 𝑃, from the distribution 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑝 = max
𝑞∈𝑄

𝑑𝑖𝑠𝑡 𝑝,𝑞

σ𝑝∈𝑃 𝑑𝑖𝑠𝑡(𝑝,𝑞)
, 

is a coreset if 

𝐶 ≥
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑄

𝜖2
⋅ ෍

𝑝∈𝑃

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑝



Observation:

No small coreset 𝐶 ⊂ 𝑃 exists for k-segment queries

Coreset for 𝑘-Segment mean



Illustration for observation
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Input P: n points on the x-axis
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Query f:    covers all except this one
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Illustration for observation

Input P: n points on the x-axis

Coreset C: all points except one 

Query f:    covers all except this one

1 2 3 4 6 7 8 9 10 11
t

5|| (5) ||p f−

5

Cost(𝑃, 𝑓) > 0

Cost(𝐶, 𝑓) = 0

Unbounded factor 

approximation



∀𝑝 ∈ 𝑃: 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑝 = max
𝑞∈𝑄

𝑑𝑖𝑠𝑡 𝑝, 𝑞

σ𝑝∈𝑃 𝑑𝑖𝑠𝑡(𝑝, 𝑞)
= 1

⇒ 𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦: 𝑛

Coreset for 𝑘-Segment mean



Observation:

Points on a segment can be stored  by the two indexes of 
their end-points

Coreset for 𝑘-Segment mean
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Observation:

Points on a segment can be stored  by the two indexes of 
their end-points and the slope of the segment.

Coreset for 𝑘-Segment mean

1 2 3 4 5 6 7 8 9 10 11
t



Coreset for 𝑘-Segment mean (new definition)

• Input: 𝑃 = {(1, 𝑝1), … , (1, 𝑝𝑛) | 𝑝𝑖 ∈ 𝑅𝑑} ⊆ 𝑅𝑑+1

• k-segment: 𝑓: 𝑅 → 𝑅𝑑

• Query space: 𝑄 = { 𝑓1, ⋯ , 𝑓𝑘 ∣ 𝑓𝑖 𝑖𝑠 𝑎 𝑠𝑒𝑔𝑚𝑒𝑛𝑡}}

• Cost function: 𝑐𝑜𝑠𝑡 𝑃, 𝑓 = σ𝑖=1
𝑛 𝑝𝑖 − 𝑓 𝑖 2

2

• Output: 𝑪,𝝎 𝑤ℎ𝑒𝑟𝑒 𝐶 ⊆ 𝑃, 𝜔: 𝐶 → 𝑅 𝑠. 𝑡. ∀𝑓 ∈ 𝑄:

෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2 − ෍

𝑝𝑖∈𝐶

𝝎 𝑝𝑖 ⋅ 𝑝𝑖 − 𝑓 𝑖 2
2 ≤ 𝜖 ⋅ ෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2



Coreset for 𝑘-Segment mean 

Input: 𝑃, 𝑄 and an 𝛼, 𝛽 -approximation 𝐵. Let 𝑝′ = proj p, B .

Goal: To compute a set 𝑪,𝝎 such that for every ∀𝑓 ∈ 𝑄:

෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2 − ෍

𝑝𝑖∈𝐶

𝝎 𝑝𝑖 ⋅ 𝑝𝑖 − 𝑓 𝑖 2
2 ≤ 𝜖 ⋅ ෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2



Coreset for 𝑘-Segment mean 

Input: 𝑃, 𝑄 and an 𝛼, 𝛽 -approximation 𝐵. Let 𝑝′ = proj p, B .

Goal: To compute a set 𝑪,𝝎 such that for every ∀𝑓 ∈ 𝑄:

෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2 − ෍

𝑝𝑖∈𝐶

𝝎 𝑝𝑖 ⋅ 𝑝𝑖 − 𝑓 𝑖 2
2 ≤ 𝜖 ⋅ ෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2

→ ෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2 − ෍

𝑝𝑖∈𝑃

𝑝𝑖
′ − 𝑓 𝑖 2

2 + ෍

𝑝𝑖∈𝑃

𝑝𝑖
′ − 𝑓 𝑖 2

2 − ෍

𝑝𝑖∈𝐶

𝝎 𝑝𝑖 ⋅ 𝑝𝑖 − 𝑓 𝑖 2
2

≤ 𝜖 ⋅ ෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2



Coreset for 𝑘-Segment mean 

Input: 𝑃, 𝑄 and an 𝛼, 𝛽 -approximation 𝐵. Let 𝑝′ = proj p, B .

Goal: To compute a set 𝑪,𝝎 such that for every ∀𝑓 ∈ 𝑄:

෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2 − ෍

𝑝𝑖∈𝐶

𝝎 𝑝𝑖 ⋅ 𝑝𝑖 − 𝑓 𝑖 2
2 ≤ 𝜖 ⋅ ෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2

→ ෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2 − ෍

𝑝𝑖∈𝑃

𝑝𝑖
′ − 𝑓 𝑖 2

2 + ෍

𝑝𝑖∈𝑃

𝑝𝑖
′ − 𝑓 𝑖 2

2 − ෍

𝑝𝑖∈𝐶

𝝎 𝑝𝑖 ⋅ 𝑝𝑖 − 𝑓 𝑖 2
2

≤ 𝜖 ⋅ ෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2

→
σ𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2 − σ𝑝𝑖∈𝑃

𝑝𝑖
′ − 𝑓 𝑖 2

2 + σ𝑝𝑖∈𝑃
𝑝𝑖
′ − 𝑓 𝑖 2

2 − σ𝑝𝑖∈𝐶
𝝎 𝑝𝑖 ⋅ 𝑝𝑖 − 𝑓 𝑖 2

2

σ𝑝𝑖∈𝑃
𝑝𝑖 − 𝑓 𝑖 2

2 ≤ 𝜖



Coreset for 𝑘-Segment mean 

Input: 𝑃, 𝑄 and an 𝛼, 𝛽 -approximation 𝐵. Let 𝑝′ = proj p, B .

Goal: To compute a set 𝑪,𝝎 such that for every ∀𝑓 ∈ 𝑄:

෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2 − ෍

𝑝𝑖∈𝐶

𝝎 𝑝𝑖 ⋅ 𝑝𝑖 − 𝑓 𝑖 2
2 ≤ 𝜖 ⋅ ෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2

→ ෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2 − ෍

𝑝𝑖∈𝑃

𝑝𝑖
′ − 𝑓 𝑖 2

2 + ෍

𝑝𝑖∈𝑃

𝑝𝑖
′ − 𝑓 𝑖 2

2 − ෍

𝑝𝑖∈𝐶

𝝎 𝑝𝑖 ⋅ 𝑝𝑖 − 𝑓 𝑖 2
2

≤ 𝜖 ⋅ ෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2

→
σ𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2 − σ𝑝𝑖∈𝑃

𝑝𝑖
′ − 𝑓 𝑖 2

2 + σ𝑝𝑖∈𝑃
𝑝𝑖
′ − 𝑓 𝑖 2

2 − σ𝑝𝑖∈𝐶
𝝎 𝑝𝑖 ⋅ 𝑝𝑖 − 𝑓 𝑖 2

2

σ𝑝𝑖∈𝑃
𝑝𝑖 − 𝑓 𝑖 2

2 ≤ 𝜖

Add the projections to the coreset 𝐶

✓



Coreset for 𝑘-Segment mean 

Input: 𝑃, 𝑄 and an 𝛼, 𝛽 -approximation 𝐵. Let 𝑝′ = proj p, B .

Goal: To compute a set 𝑪,𝝎 such that for every ∀𝑓 ∈ 𝑄:

෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2 − ෍

𝑝𝑖∈𝐶

𝝎 𝑝𝑖 ⋅ 𝑝𝑖 − 𝑓 𝑖 2
2 ≤ 𝜖 ⋅ ෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2

→ ෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2 − ෍

𝑝𝑖∈𝑃

𝑝𝑖
′ − 𝑓 𝑖 2

2 + ෍

𝑝𝑖∈𝑃

𝑝𝑖
′ − 𝑓 𝑖 2

2 − ෍

𝑝𝑖∈𝐶

𝝎 𝑝𝑖 ⋅ 𝑝𝑖 − 𝑓 𝑖 2
2

≤ 𝜖 ⋅ ෍

𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2

→
σ𝑝𝑖∈𝑃

𝑝𝑖 − 𝑓 𝑖 2
2 − σ𝑝𝑖∈𝑃

𝑝𝑖
′ − 𝑓 𝑖 2

2 + σ𝑝𝑖∈𝑃
𝑝𝑖
′ − 𝑓 𝑖 2

2 − σ𝑝𝑖∈𝐶
𝝎 𝑝𝑖 ⋅ 𝑝𝑖 − 𝑓 𝑖 2

2

σ𝑝𝑖∈𝑃
𝑝𝑖 − 𝑓 𝑖 2

2 ≤ 𝜖

Bound this term’s sensitivity similar to 𝑘-means

✓



Theorem [Feldman, Sung, Rus, GIS’12]

For every discrete signal of 𝑛 points in 𝑅𝑑, there is a coreset of 

space 𝑂
𝑘

𝜖2
that can be computed in the big data model.


